Problem Set 3

[Your name] and [student ID] MAT1801-2020

Problem 1 [BHK 4.13] (5 points). Consider a distribution | over $\{0,1\}^2$ with $p(00) = p(11) = \frac{1}{2}$ and p(01) = p(10) = 0. Give a connected graph on $\{0,1\}^2$ that would be bad for running Metroplis-Hastings and a graph that would be good for running Metropolis-Hastings. What would be the problem with Gibbs sampling?

Problem 2 [BHK 4.17] (10 points). Suppose one wishes to generate uniformly at random a regular, degree three, undirected, not necessarily connected multi-graph with 1,000 vertices. A multi-graph may have multiple edges between a pair of vertices and self loops. One decides to do this by a Markov Chain Monte Carlo technique. In particular, consider a (very large) network where each vertex corresponds to a regular degree three, 1,000 vertex multi-graph. For edges, say that the vertices corresponding to two graphs are connected by an edge if one graph can be obtained from the other by a flip of a pair of edges. In a flip, a pair of edges (a,b) and (c,d) are replaced by (a,c) and (b,d).

- 1. Prove that the network whose vertices correspond to the desired graphs is connected. That is, for any two 1000-vertex degree-3 multigraphs, it is possible to walk from one to the other in this network.
- 2. Prove that the stationary distribution of the random walk is uniform over all vertices.
- 3. Give an upper bound on the diameter of the network.
- 4. How would you modify the process if you wanted to uniformly generate connected degree three multi-graphs?

Problem 3 [BHK 4.47] (5 points). A researcher was interested in determining the importance of various edges in an undirected graph. They computed the stationary probability for a random walk on the graph and let p_i be the probability of being at vertex i. If vertex i was of degree d_i , the frequency that edge (i,j) was traversed from i to j would be $\frac{1}{d_i}p_i$ and the frequency that the edge was traversed in the opposite direction would be $\frac{1}{d_j}p_j$. Thus, they assigned an importance of $\left|\frac{1}{d_i}p_i - \frac{1}{d_j}p_j\right|$ to the edge. What is wrong with their idea?

Problem 4 [BHK 4.55] (10 points). Create a random directed graph with 200 vertices and roughly 8 out-edges per vertex. Add k new vertices and calculate the pagerank with and without directed edges from the k added vertices to vertex 1. How much does adding the k edges change the pagerank of vertices for various values of k and restart frequency? To do the experiment carefully one needs to consider the initial pagerank of a vertex to which the star of k new vertices is attached.