Problem Set 7

[Your name] and [student ID] MAT1801-2020

Problem 1 [Steif 2.3 & 2.5] (10 points). Consider percolation on \mathbb{Z}^2 . We start with the graph \mathbb{Z}^2 which has vertices being the set \mathbb{Z}^2 and edges between pairs of points at Euclidean distance 1. Given $p \in [0, 1]$ We will construct a random subgraph of \mathbb{Z}^2 by letting each edge be *open* with probability p and *closed* with probability 1 - p. Define $\theta(p)$ as the probability that the size of the open component containing the origin is infinite in size.

- 1. Show that $\theta(p)$ cannot be 1 for any p < 1.
- 2. Prove that $\theta(p) > 0$ for $p > \frac{2}{3}$.

Hint (part 2): Choose N so that $\sum_{n>N}^{\infty} n4(3^{n-1})(1-p)^n < 1$. Let E_1 be the event that all edges are open in $[-N, N] \times [-N, N]$ and E_2 be the event that there are no simple cycles in the dual surrounding $[-N, N]^2$ consisting of all closed edges. Look now at $E_1 \cap E_2$.

Problem 2 [BHK 11.1, 11.4] (10 points).

- 1. Give a solution to the dilation equation f(x) = f(2x) + f(2x k) satisfying f(0) = 1. Assume k is an integer.
- 2. What is the solution to the dilation equation

$$f(x) = f(2x) + f(2x - 1) + f(2x - 2) + f(2x - 3)$$

Problem 3 (10 points). We only proved results about the critical value for bond percolation on the square lattice. Write a program to numerically approximate the critical value on several other percolation models:

- 1. Site percolation on the square lattice.
- 2. Bond percolation on the triangular lattice.
- 3. Site percolation on the triangular lattice.
- 4. Bond percolation on the hexagonal lattice.
- 5. Site percolation on the hexagonal lattice.