13. Majority and frequent items

Friday, October 8, $2021 \quad$ 3:13 PM
Last fine: Frequency moment sketches
Today: Majority t Frequestitem items
Majority item.
Ex n people voting for m candidates
Does any candidate hove $>\frac{n}{2}$ votes?
i.e. Let $a_{1}, \ldots, a_{n} \in[m]$. Determine if $\exists s \in[m]$ st. s occurs $>\frac{n}{2}$ fines?

Claim: Any deterministic streaming alg requires $\leadsto(n i n(1, n))$ space, if we require that it output if there is a majority element and if so, what?
proof. Suppose n is even and tho lost $\frac{n}{2}$ items are identical.
Every possible set of unique $\frac{n}{2}$ first items nus have
a different memory cuntij, otherwise we can make a mistake by choosing second half 1 belong to one subset but not the ether. If $\frac{n}{2} \geq_{m}$, then $2^{m}-1$ subsets $\log \left(2^{m}-1\right)=\Omega(m) \quad b_{1} / 3$

$$
\frac{n}{2} \leq_{m}, \quad \text { then } \geq \frac{m!}{\left(m-\frac{n}{2}\right)!} \text { subset } \quad \log \left(\frac{m!}{\left(n-\frac{n}{2}\right)!}\right)=\Omega(n) \quad b_{1}!t_{!}
$$

Majority Alg - With undefined behavior when no majority
Initialize $B \leftarrow a$, and $c \in 1$.
For a_{i} in $i \in\{2, \ldots, n\}$,
If $B=a_{i}, \quad c \in c \neq 1$
$\}$ pained slim.
$E l_{s e}$ if $c>0, \quad c \leftarrow c-1$ of items

Else if $c=0, \quad B \in a_{i}, c \leftarrow 1$
If $c>0$, output B
If \exists majority item, appears $>\frac{n}{2}$ times, and so it canst be eliminated.

Misre-Gries Algorithm Frequent
Initialize $B_{1}, \ldots, B_{k}=0$ buckets, and $c_{1}, \ldots, c_{k}=0$ counters.
For $i \in[n]$
If \exists_{j} s.t. $\quad B_{j}=a_{i}, \quad c_{j} \leftarrow c_{j} \nmid 1$
Ese
If \exists_{j} sit $B_{j}=0, \beta_{j} \in a_{i}, c_{j} \in c_{j}+1$
Else (Decrement)
For all j

$$
\begin{aligned}
& c_{j} \in c_{j}-1 \\
& \text { If } c_{j}=0, \quad B_{j} \in 0 .
\end{aligned}
$$

Thy. 6.2 At the end of Misra-Gries, for each B_{k} with true count x_{k},

$$
c_{k} \in\left[x_{k}-\frac{n}{k+1}, x_{k}\right]
$$

If some $s \neq B_{k}$ for any k, then $x_{k} \leq \frac{n}{k+1}$.
Cou,t-Min -Sketch
Recall Bloom filters. Probabilistic set membership query.
Maintain biz vector
Insert item a_{i}

by settmg bite corresponding to multiple ind. hash functions. Query items by checking if bits $h,(s), \ldots, h_{k}(s)$ are set. Might accilatally return yes because of hash collision, but unlikely given right parana! Can also. imaghe each hart function haring its own range.

h_{1} h_{2} \vdots $h_{k}$$\rightarrow$

lets adapt this to freq. connoting using Coont-min Sketch.
let $a_{1}, a_{2}, \ldots, a_{n} \in[m]$ and let $\vec{x} \in \mathbb{R}^{n}$ be the freq. of each item in $[n]$.
We wat to estimate \vec{x}.
Maintain $t x_{w}$ matrix of counters

$$
C=t\{\underbrace{\left[\begin{array}{ccc}
& h_{1}(\mathcal{J}) \\
h_{2}(J) & \vdots & \\
& & \\
& & h_{t}(\mathcal{J})
\end{array}\right]}_{w}
$$

For each rove, associate a hash function $h_{j}[m] \rightarrow[\omega]$ from a 2 -wise far. $1 / y$. Insert item i by incrementing all countess $C_{j, h_{j}(i)}$ for $g \in[t]$.
Output Point $Q_{\text {aery }}(i)=\min _{j \in[t]} C_{j, h_{j}(i)}$
Claim: If $t>\lg \left(\frac{1}{\delta}\right)$ and $w \geq \frac{2}{2}$, then

$$
\operatorname{Prob}\left(\operatorname{Pont} Q_{\text {aery }}(i) \in\left[x_{i}-\varepsilon\|\vec{x}\|_{1}, \quad x_{i}+\varepsilon\|\vec{x}\|_{1}\right]\right) \geqslant 1-\delta
$$

proof. For an $j \in[t)$,

$$
\begin{aligned}
& C_{j, h_{j}(i)}=x_{i}+\sum_{\substack{r, k \\
h_{j}(r)=h_{r}(i)}} x_{r}=x_{i}+\overbrace{\sum_{r \neq i} \delta_{r} x_{r}}^{\text {noise }} \\
& \underset{\substack{r \\
h_{j}(r)=h_{j}(i) \\
r \neq i}}{r \neq i} \quad \text { where } \delta_{r}= \begin{cases}1 & \text { if } h_{j}(r)=h_{j}(i) \\
0 & \text { otherwise }\end{cases} \\
& \mathbb{E} \sum_{r \neq i} \delta_{r} x_{r}=\frac{1}{w} \sum_{r \neq i} x_{r} \leqslant \frac{\varepsilon}{2}\|\vec{x}\|_{1}
\end{aligned}
$$

By Markov's inequity + sine $x_{i} \geq 0$,

$$
\operatorname{Prob}\left(\text { noise }>\varepsilon\|\vec{x}\|_{1}\right) \leq \frac{1}{2} \text {. }
$$

So $C_{j, h_{j}(i)} \geq x_{i}$ and u., $>\frac{1}{2}, \quad C_{j, h_{j}(l)} \leq \varepsilon\|\vec{x}\|$,
So we are repenting that $t=\lg \left(\frac{1}{\delta}\right)$ times,

$$
\left.\operatorname{Prob}^{\min } C_{j \in[t]}>h_{j}(i)>x_{i}+\varepsilon\|\vec{x}\|_{1}\right)=\operatorname{Prob}\left(\forall j \in[t], C_{j, h_{j}(i)}>\varepsilon\left\|_{x}\right\|_{1}\right)
$$

$$
\begin{aligned}
& \operatorname{Irob}\left(\min _{j \in[t]} L_{j, h_{j}(i)}-x_{i}+\varepsilon\|x\|_{l}\right)=\operatorname{rob}\left(\forall j \in[t], l_{j, h_{j}(i)}-2\|x\|_{1}\right) \\
& \leq \frac{1}{2^{t}}<\delta .
\end{aligned}
$$

Only useful for heavy hitters (very frequat items) $x_{i}>\varepsilon\|\vec{x}\|$, So useful for $\sim \frac{1}{\varepsilon}$ of the values at most.

Set -similarity
Let $A, B C U$ be two subsets. Let $n=|A \cup B|$.
Then Jaccard similarity $J=J(A, B)=\frac{|A \cap B|}{|A \cup B|}$ is a measure if sets similarity
Minhesh (idealized)

1. Let $h_{i}: U \rightarrow[\varepsilon]$ be ind. unif. random hash functions, $i \in[k]$
2. Let $\delta_{i}= \begin{cases}1, & \min _{a \in A} h_{i}(a)=\min _{b \in B} h_{i}(b) \quad \text { ic using irade actual } \\ 0, \text { else. } & \text { random hash functions }\end{cases}$
3. Than cuntpunt $\hat{J}=\frac{1}{k} \sum_{i=1}^{k} \delta_{i}$ as estimate for J.

Clan: If $q^{>} \frac{k_{n}{ }^{2}}{\delta}$, and $k>\frac{2}{\varepsilon^{2} \delta}$, then

$$
\operatorname{Prob}(|\hat{J}-J|>\varepsilon)<\delta .
$$

proof. Recall that if h_{i} is a universal hash function, all of $h_{i}(x), x \in A \cup B$ are distant with probability at least $1-\frac{\delta}{2 k}$.
(signatures)
By union, bound, all hi have no collisions whip. at least $1-\frac{\delta}{2}$.
Then $h_{i}(a)=h_{i}(b)$ only if $a=b$.

$$
\left.\Rightarrow \quad \min _{a \in A} h_{i}(a)=\min _{b \in B} h_{i}(b) \text { on }\right\} \text { if } a=b \in A \cap B \text {. }
$$

Clearly, the converse also hold, so $\mathbb{E} \delta_{i}=J$, and $\mathbb{E} \hat{J}=J, \quad \operatorname{Var}\left(\delta_{i}\right) \leq J$. then $\operatorname{Prob}(|\hat{J}-J| \geq \varepsilon) \varepsilon \frac{\operatorname{Var}(\hat{J})}{\varepsilon^{2}} \leq \frac{1}{\varepsilon^{2}} \cdot \frac{1}{K} \cdot J<\frac{\delta J}{2} \leq \frac{\delta}{2}$.

Thus, we need $O\left(\frac{1}{\varepsilon^{2} \delta} \log \frac{k_{n}^{2}}{\delta}\right)=O \underbrace{\left(\frac{1}{\varepsilon^{2}} \log \frac{n}{\varepsilon \delta}\right)}_{\text {not fist at all. }}$
Ashe: Can do better in idealized setting $O\left(\frac{1}{\varepsilon^{2}}\left(\log \log n+\log \frac{1}{\varepsilon}\right)\right)$ [$v_{u}, w_{\text {caber, }}$ THE, 2080$]$ for ε additere erin
Assize: We assume hush functions were fulls randan
U.fornately, cannot just use 2 - or 4 -wise hash families, but need a stranger cont, ie. that any item is equally likely to be the minimum.
A nev criterion called mintwise independence. [Indy, $k 999]$
L_{s} almost achievable tor l-wire in! hash functor for e large enough.

