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List of topics

• Random hashing

• Probabilistic streaming and sketching algorithms

• Matrix decompositions (including NMF and probabilistic)

• Random graph theory / percolation theory

• Wavelet bases

• Complexity and entropy

• Nonlinear dimensionality reduction

• Computational topology



Possibly out-of-scope topics (because ML)

These are all super fun topics, but also covered in many other classes. 
Take e.g. Prof. Papyan’s MAT1510 instead: 
https://sites.google.com/view/mat1510

• Clustering

• Linear classifiers

• Kernel methods

• Deep learning

• Graphical models

https://sites.google.com/view/mat1510


Machine Learning

• Intuition: try to learn the underlying probability distribution 
generating the data we care about.

• An algorithm builds a mathematical model based on training data, 
which it uses to make predictions or decisions on new data.

• We say that model parameters are “learned” from the data.

• We focus here on the supervised classification task, though many of 
the other topics in data science are sometimes “considered” ML.



ML: linear classifier

• Given an input vector 𝒙, the 
output 𝑦 = 𝑓 𝒘 ⋅ 𝒙 , where the 
weights 𝒘 are learned from the 
data should match label 𝑙.

• Simple example: 𝑓 𝑎 = 1 if 𝑎 >
𝑡, for some threshold 𝑡, and 0 
otherwise.

–Dividing hyperplane, separating 
classes 0 and 1.

https://en.wikipedia.org/wiki/Linear_classifier

https://en.wikipedia.org/wiki/Linear_classifier


ML: linear classifiers

• Perceptron algorithm

–Technical modification, ෝ𝒙 = (𝒙, 1), ෝ𝒘 = (𝒘,−𝑡), making separating 
hyperplanes go through the origin.

–Initialize with 𝒘 ← 0.

–While there exists 𝒙𝒊 with 𝒙𝒊𝑙𝑖 ⋅ 𝒘 ≤ 0, update 𝒘 ← 𝒘+ 𝒙𝒊𝑙𝑖, where 
𝑙𝑖 = {−1, 1} is class label.

• SVM (Support Vector Machine)

–Tries to find the maximum-margin hyperplane, not just any 
hyperplane (like perceptron).



ML: kernel trick

• Data may not be linearly separable

• But we can often map the data to another space where it is linearly separable.

• E.g. 𝜑 𝑥1, 𝑥2 = 𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2

• Kernel: 𝐾 𝒙, 𝒚 = 𝜑 𝒙 ⋅ 𝜑 𝒚 = 𝒙 ⋅ 𝒚 + 𝒙 2 𝒚 2

• Careful choice of map allows using kernel function instead of explicit mapping.

https://en.wikipedia.org/wiki/Kernel_method

https://en.wikipedia.org/wiki/Kernel_method


ML: deep learning

• Chaining together a bunch of simple 
nonlinear classifiers empirically 
improves classification.

• Each node represents a linear 
combination of parent node values, 
modified by a nonlinearity (often a 
ReLU).

• Empirically, using a deep network 
allows us to use a much simpler 
nonlinearity than more complicated 
kernel functions.



ML: back-propagation

• The network can be thought of as a function
𝑔 𝑥 = 𝑓𝐿 𝑊𝐿𝑓𝐿−1 𝑊𝐿−1⋯𝑓1 𝑊1𝑥 ⋯

where, 𝑓𝑙 is the nonlinearity, and 𝑊𝑙 is a weights matrix at layer at layer 𝑙.

• We also have a loss/cost function 𝐶 𝑦𝑖 , 𝑔 𝑥𝑖 , where 𝑦𝑖 is the true label of 
a data point 𝑥𝑖.

• We want to use gradient descent to optimize the weights based on the 
training data.

• Each individual component of the gradient 𝜕𝐶/𝜕𝑤𝑗𝑘
𝑙 can be computed via 

the chain rule.
• The back-propagation algorithm avoids duplicate calculations by computing 

the gradient of each layer from back to front. (i.e. starting from the output 
layer)



Clustering
• Grouping together data points into 

“meaningful” groups.

• Also known variously as partitioning, 
community detection, finding spin 
glass states, etc.

• Two major versions

–High-dimensional space (not just 
vector spaces)

–On a graph

• Hard and soft (depending on group 
assignment)

https://en.wikipedia.org/wiki/K-means_clustering

https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png

https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png


K-means

• Given a set of observations (𝑥1, … , 𝑥𝑛), 𝑥𝑖 ∈ ℝ𝑑, find a partition 𝑺 =
𝑆1, … , 𝑆𝑘 that minimizes squared distances to cluster centers.

• Naïve k-means algorithm

–Initialize means (e.g. with random choice)

–Iterate until convergence:
• Assign each observation to nearest cluster center

• Calculate new cluster means based on assignment.

• Converges if using Euclidean distance



Hierarchical clustering

• E.g. on a graph, repeatedly cut the graph in half to minimize the cut 
weight.

• Alternately, iteratively link together pairs of points that are closest 
together.

https://en.wikipedia.org/wiki/Hierarchical_clustering

https://en.wikipedia.org/wiki/Hierarchical_clustering


Scoring functions

• E.g. Girvan-Newman modularity.

–The fraction of edges within clusters minus the expected fraction if 
edges were distributed at random (under several different random 
graph models).

• Related to Hamiltonian of spin glass in physics. (i.e. energy of a 
system where adjacent nodes want the same spin).

• Cluster scoring function independent of number of clusters. Often 
paired with a hierarchical clustering algorithm to allow choosing the 
correct level.



(Gaussian) mixture models

• Recall we covered a simple Gaussian mixture model where we 
assumed our dataset was generated by a combination of different 
radially symmetric Gaussians.

• In general, let 𝑝 𝜃 = σ𝑖=1
𝐾 𝜙𝑖𝒩 𝜇𝑖 , Σ𝑖 , where 𝜙𝑖 is a weight 

associated with each multivariate Gaussian distribution 𝒩 𝜇𝑖 , Σ𝑖 .

• How can we estimate 𝑝 𝜃 from a bunch of samples drawn from it?



Expectation-maximization iterative algorithm

• One commonly used iterative technique to fit parameters 𝜃 and 
missing latent variables 𝑍 is the EM-algorithm.

• Algorithm:

–Initialize parameters 𝜃 to random values

–Compute the probability of each possible value of 𝑍, given 𝜃 (E-step).

–Then, use the just-computed values of 𝑍 to compute a better estimate 
for the parameters 𝜃 (M-step)

–Iterate the last two steps until convergence.



Hidden Markov models (HMM)

• Let 𝑋𝑛 and 𝑌𝑛 be discrete-time stochastic processes  and 𝑛 ≥ 1. The 
pair (𝑋𝑛, 𝑌𝑛) is a Hidden Markov Model if 𝑋𝑛 is a Markov process and 
not directed observable and 𝑃 𝑌𝑛 ∈ 𝐴 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 =
𝑃 𝑌𝑛 ∈ 𝐴 𝑋𝑛 = 𝑥𝑛 .

• Generalization of a mixture model where the hidden (latent) variables 
controlling the mixture component are related through a Markov 
chain instead of independent.

• System being modelled is assumed to be a Markov process with 
unobservable (hidden) states.

• Can be learned using a variation of the EM algorithm.



Hidden Markov Models

• Inference tasks:

–given parameters of a model, compute probability of a particular 
output sequence.

–Figure out the distribution over hidden states of the last latent 
variable at the end of the sequence.

https://en.wikipedia.org/wiki/Hidden_Markov_modelBlum, Hopcroft, Kannan, 2020

https://en.wikipedia.org/wiki/Hidden_Markov_model


Graphical models

• “Graphical” in the sense of “graph theory”

• A graphical model is a compact representation of a probability 
distribution over 𝑛 variables 𝑥1, … , 𝑥𝑛.

• When using a directed acyclic graph, is known as a Bayesian or belief 
network.

• When using an undirected graph, is known as a Markov random field 



Bayesian or Belief networks

𝑝 𝑥1, … , 𝑥𝑛 = Π𝑖=1
𝑛 𝑝 𝑥𝑖 parents of 𝑥𝑖

• Each directed edge from 𝑦 to 𝑥 represents a 
conditional probability 𝑝 𝑦 𝑥 .

• A variable without any in-edges has an 
unconditional probability distribution.

• We observe only certain variables, known as 
“evidence”.

• E.g. A doctor observes an ill patient’s 
symptoms
– What disease does the patient have?

– What is the probability of a specific disease?

Blum, Hopcroft, Kannan, 2020



Markov random field

• Given an undirected graph 𝐺 = 𝑉, 𝐸 , a set of random variables 𝑋 =
𝑋𝑣 𝑣∈𝑉 indexed by 𝑉 form a Markov random field with respect to 𝐺

if every variable is conditionally independent of all other variables 
given its neighbors.

https://en.wikipedia.org/wiki/Markov_random_field

https://en.wikipedia.org/wiki/Markov_random_field


Markov random field examples

• Application: Ising model of spin glasses / community detection.

–Each particle 𝑥1, … , 𝑥𝑛 can have a spin ±1, and the energy of the 
system is exp 𝑐 σ𝑖~𝑗 𝑥𝑖 − 𝑥𝑗 .

–Minimizing the energy, subject to specified constraints, is a Markov 
random field.

• Application: Image reconstruction

–Each pixel is a graph vertex, and we may wish nearby pixels to be 
similar, with some penalty.


