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List of topics

* Random hashing

* Probabilistic streaming and sketching algorithms

* Matrix decompositions (including NMF and probabilistic)
 Random graph theory / percolation theory

* Wavelet bases

* Complexity and entropy

* Nonlinear dimensionality reduction

 Computational topology



Possibly out-of-scope topics (because ML)

These are all super fun topics, but also covered in many other classes.
Take e.g. Prof. Papyan’s MAT1510 instead:
https://sites.google.com/view/mat1510

* Clustering

* Linear classifiers
e Kernel methods
* Deep learning

* Graphical models


https://sites.google.com/view/mat1510

Machine Learning

* Intuition: try to learn the underlying probability distribution
generating the data we care about.

* An algorithm builds a mathematical model based on training data,
which it uses to make predictions or decisions on new data.

* We say that model parameters are “learned” from the data.

* We focus here on the supervised classification task, though many of
the other topics in data science are sometimes “considered” ML.



ML: linear classifier

* Given an input vector x, the
output y = f(w - x), where the
weights w are learned from the
data should match label [.

* Simple example: f(a) = 1ifa >
t, for some threshold t, and O
otherwise.

—Dividing hyperplane, separating
classes 0 and 1.

https://en.wikipedia.org/wiki/Linear classifier



https://en.wikipedia.org/wiki/Linear_classifier

ML: linear classifiers

* Perceptron algorithm

—Technical modification, X = (x, 1), w = (w, —t), making separating
hyperplanes go through the origin.

—Initialize with w « 0.
—While there exists x; with x;[; - w < 0, update w <« w + x;l;, where
[; = {—1,1}is class label.
* SVM (Support Vector Machine)

—Tries to find the maximum-margin hyperplane, not just any
hyperplane (like perceptron).




ML: kernel trick

Data may not be linearly separable

But we can often map the data to another space where it is linearly separable.
E.g. 90((951;352)) = (x1,x2,x12 + xzz)

Kernel: K(x,y) = ¢(x) - 9 (y) = x - y + |x|*|y|?
Careful choice of map allows using kernel function instead of explicit mapping.

https:/)en.\)vikir;edia.org/wiki/KerneI method



https://en.wikipedia.org/wiki/Kernel_method

ML: deep learning

* Chaining together a bunch of simple
nonlinear classifiers empirically
improves classification.

* Each node represents a linear
combination of parent node values,
modified by a nonlinearity (often a
RelLU).

* Empirically, using a deep network
allows us to use a much simpler
nonlinearity than more complicated
kernel functions.



ML: back-propagation

* The network can be thought of as a function
gx) = fFEWEFETWET e fI (W) )
where, f! is the nonlinearity, and W' is a weights matrix at layer at layer L.

* We also have a loss/cost function C(yl-, g(xl-)), where y; is the true label of
a data point x;.

* We want to use gradient descent to optimize the weights based on the
training data.

* Each individual component of the gradient 6C/6lek can be computed via
the chain rule.

* The back-propagation algorithm avoids duplicate calculations by computing
;che g)radient of each layer from back to front. (i.e. starting from the output
ayer
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* Grouping together data points into SRt ¥

“meaningful” groups. o eHRRERY :

e Also known variously as partitioning, .| -
Commun|ty deteCtiOn, flnding Spin https://en.wikipedia.org/wiki/K-means _clustering

glass states, etc.

* TwWo major versions

—High-dimensional space (not just
vector spaces)

—On a graph

* Hard and soft (depending on group
assignment)

https://commons.wikimedia.org/wiki/File:Zachary%27s_karate club.png



https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png

K-means

* Given a set of observations (x4, ..., x,), x; € R%, find a partition § =
{S4, ..., S} } that minimizes squared distances to cluster centers.

* Naive k-means algorithm
—Initialize means (e.g. with random choice)

—Iterate until convergence:
* Assign each observation to nearest cluster center
* Calculate new cluster means based on assighment.

* Converges if using Euclidean distance



Hierarchical clustering

* E.g. on a graph, repeatedly cut the graph in half to minimize the cut
weight.

* Alternately, iteratively link together pairs of points that are closest
together.
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https://en.wikipedia.org/wiki/Hierarchical clustering



https://en.wikipedia.org/wiki/Hierarchical_clustering

Scoring functions

* E.g. Girvan-Newman modularity.

—The fraction of edges within clusters minus the expected fraction if
edges were distributed at random (under several different random
graph models).

 Related to Hamiltonian of spin glass in physics. (i.e. energy of a
system where adjacent nodes want the same spin).

 Cluster scoring function independent of number of clusters. Often
paired with a hierarchical clustering algorithm to allow choosing the
correct level.



(Gaussian) mixture models

* Recall we covered a simple Gaussian mixture model where we
assumed our dataset was generated by a combination of different
radially symmetric Gaussians.

* In general, let p(8) = X, ¢; N (u;, %;), where ¢; is a weight
associated with each multivariate Gaussian distribution N (u;, ;).

* How can we estimate p(8) from a bunch of samples drawn from it?



Expectation-maximization iterative algorithm

* One commonly used iterative technique to fit parameters 6 and
missing latent variables Z is the EM-algorithm.

e Algorithm:
—Initialize parameters 6 to random values
—Compute the probability of each possible value of Z, given 6 (E-step).

—Then, use the just-computed values of Z to compute a better estimate
for the parameters 8 (M-step)

—Iterate the last two steps until convergence.



Hidden Markov models (HMM)

* Let X,, and Y;, be discrete-time stochastic processes and n = 1. The
pair (X,,,Y,,) is a Hidden Markov Model if X,, is a Markov process and
not directed observable and P(Y,, € A|X; = x¢, ..., X;, = x,,) =
P(Y, € A|X,, = x,,).

* Generalization of a mixture model where the hidden (latent) variables
controlling the mixture component are related through a Markov
chain instead of independent.

* System being modelled is assumed to be a Markov process with
unobservable (hidden) states.

* Can be learned using a variation of the EM algorithm.



Hidden Markov Models

* Inference tasks:

—given parameters of a model, compute probability of a particular
output sequence.

—Figure out the distribution over hidden states of the last latent
variable at the end of the sequence.
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Blum, Hopcroft, Kannan, 2020 https://en.wikipedia.org/wiki/Hidden Markov model



https://en.wikipedia.org/wiki/Hidden_Markov_model

Graphical models

e “Graphical” in the sense of “graph theory”

* A graphical model is a compact representation of a probability
distribution over n variables x4, ..., x,,.

* When using a directed acyclic graph, is known as a Bayesian or belief
network.

 When using an undirected graph, is known as a Markov random field



Bayesian or Belief networks

p(xq, ..., X)) = I p(x;|parents of x;)

Each directed edge from y to x represents a
conditional probability p(y|x).

A variable without any in-edges has an
unconditional probability distribution.

We observe only certain variables, known as
“evidence”.

E.g. A doctor observes an ill patient’s
symptoms

— What disease does the patient have?

— What is the probability of a specific disease?
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Markov random field

* Given an undirected graph G = (V, E), a set of random variables X =
(X,)yey indexed by V form a Markov random field with respect to G
if every variable is conditionally independent of all other variables
given its neighbors.

https://en.wikipedia.org/wiki/Markov random field



https://en.wikipedia.org/wiki/Markov_random_field

Markov random field examples

* Application: Ising model of spin glasses / community detection.
—Each particle x4, ..., x,, can have a spin +1, and the energy of the
system is exp(c ZiNj‘xi — x]|) .
—Minimizing the energy, subject to specified constraints, is a Markov
random field.

* Application: Image reconstruction

—Each pixel is a graph vertex, and we may wish nearby pixels to be
similar, with some penalty.



