Overview of Topics

MAT1841 - Fall 2021
Yun William Yu

List of topics

- Random hashing
- Probabilistic streaming and sketching algorithms
- Matrix decompositions (including NMF and probabilistic)
- Random graph theory / percolation theory
- Wavelet bases
- Complexity and entropy
- Nonlinear dimensionality reduction
- Computational topology

Possibly out-of-scope topics (because ML)

These are all super fun topics, but also covered in many other classes. Take e.g. Prof. Papyan's MAT1510 instead:
https://sites.google.com/view/mat1510

- Clustering
- Linear classifiers
- Kernel methods
- Deep learning
- Graphical models

Machine Learning

- Intuition: try to learn the underlying probability distribution generating the data we care about.
- An algorithm builds a mathematical model based on training data, which it uses to make predictions or decisions on new data.
- We say that model parameters are "learned" from the data.
- We focus here on the supervised classification task, though many of the other topics in data science are sometimes "considered" ML.

ML: linear classifier

- Given an input vector \boldsymbol{x}, the output $y=f(\boldsymbol{w} \cdot \boldsymbol{x})$, where the weights \boldsymbol{w} are learned from the data should match label l.
- Simple example: $f(a)=1$ if $a>$ t, for some threshold t, and 0 otherwise.

-Dividing hyperplane, separating classes 0 and 1.

ML: linear classifiers

- Perceptron algorithm
-Technical modification, $\widehat{\boldsymbol{x}}=(\boldsymbol{x}, 1), \widehat{\boldsymbol{w}}=(\boldsymbol{w},-t)$, making separating hyperplanes go through the origin.
-Initialize with $\boldsymbol{w} \leftarrow 0$.
-While there exists $\boldsymbol{x}_{\boldsymbol{i}}$ with $\boldsymbol{x}_{\boldsymbol{i}} l_{i} \cdot \boldsymbol{w} \leq 0$, update $\boldsymbol{w} \leftarrow \boldsymbol{w}+\boldsymbol{x}_{\boldsymbol{i}} l_{i}$, where $l_{i}=\{-1,1\}$ is class label.
- SVM (Support Vector Machine)
-Tries to find the maximum-margin hyperplane, not just any hyperplane (like perceptron).

ML: kernel trick

- Data may not be linearly separable
- But we can often map the data to another space where it is linearly separable.
- E.g. $\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$
- Kernel: $K(\boldsymbol{x}, \boldsymbol{y})=\varphi(\boldsymbol{x}) \cdot \varphi(\boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}+|\boldsymbol{x}|^{2}|\boldsymbol{y}|^{2}$
- Careful choice of map allows using kernel function instead of explicit mapping.

ML: deep learning

- Chaining together a bunch of simple nonlinear classifiers empirically improves classification.
- Each node represents a linear combination of parent node values, modified by a nonlinearity (often a ReLU).
- Empirically, using a deep network allows us to use a much simpler nonlinearity than more complicated kernel functions.

ML: back-propagation

- The network can be thought of as a function

$$
g(x)=f^{L}\left(W^{L} f^{L-1}\left(W^{L-1} \cdots f^{1}\left(W^{1} x\right) \cdots\right)\right)
$$

where, f^{l} is the nonlinearity, and W^{l} is a weights matrix at layer at layer l.

- We also have a loss/cost function $C\left(y_{i}, g\left(x_{i}\right)\right)$, where y_{i} is the true label of a data point x_{i}.
- We want to use gradient descent to optimize the weights based on the training data.
- Each individual component of the gradient $\partial C / \partial w_{j k}^{l}$ can be computed via the chain rule.
- The back-propagation algorithm avoids duplicate calculations by computing the gradient of each layer from back to front. (i.e. starting from the output layer)

Clustering

- Grouping together data points into "meaningful" groups.
- Also known variously as partitioning, community detection, finding spin glass states, etc.
- Two major versions
-High-dimensional space (not just vector spaces)
-On a graph
- Hard and soft (depending on group assignment)

https://en.wikipedia.org/wiki/K-means clustering

K-means

- Given a set of observations $\left(x_{1}, \ldots, x_{n}\right), x_{i} \in \mathbb{R}^{d}$, find a partition $\boldsymbol{S}=$ $\left\{S_{1}, \ldots, S_{k}\right\}$ that minimizes squared distances to cluster centers.
- Naïve k-means algorithm
-Initialize means (e.g. with random choice)
-Iterate until convergence:
- Assign each observation to nearest cluster center
- Calculate new cluster means based on assignment.
- Converges if using Euclidean distance

Hierarchical clustering

- E.g. on a graph, repeatedly cut the graph in half to minimize the cut weight.
- Alternately, iteratively link together pairs of points that are closest together.

https://en.wikipedia.org/wiki/Hierarchical clustering

Scoring functions

- E.g. Girvan-Newman modularity.
-The fraction of edges within clusters minus the expected fraction if edges were distributed at random (under several different random graph models).
- Related to Hamiltonian of spin glass in physics. (i.e. energy of a system where adjacent nodes want the same spin).
- Cluster scoring function independent of number of clusters. Often paired with a hierarchical clustering algorithm to allow choosing the correct level.

(Gaussian) mixture models

- Recall we covered a simple Gaussian mixture model where we assumed our dataset was generated by a combination of different radially symmetric Gaussians.
- In general, let $p(\theta)=\sum_{i=1}^{K} \phi_{i} \mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$, where ϕ_{i} is a weight associated with each multivariate Gaussian distribution $\mathcal{N}\left(\mu_{i}, \Sigma_{i}\right)$.
- How can we estimate $p(\theta)$ from a bunch of samples drawn from it?

Expectation-maximization iterative algorithm

- One commonly used iterative technique to fit parameters θ and missing latent variables Z is the EM-algorithm.
- Algorithm:
-Initialize parameters θ to random values
-Compute the probability of each possible value of Z, given θ (E-step).
-Then, use the just-computed values of Z to compute a better estimate for the parameters θ (M -step)
-Iterate the last two steps until convergence.

Hidden Markov models (HMM)

- Let X_{n} and Y_{n} be discrete-time stochastic processes and $n \geq 1$. The pair $\left(X_{n}, Y_{n}\right)$ is a Hidden Markov Model if X_{n} is a Markov process and not directed observable and $P\left(Y_{n} \in A \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=$ $P\left(Y_{n} \in A \mid X_{n}=x_{n}\right)$.
- Generalization of a mixture model where the hidden (latent) variables controlling the mixture component are related through a Markov chain instead of independent.
- System being modelled is assumed to be a Markov process with unobservable (hidden) states.
- Can be learned using a variation of the EM algorithm.

Hidden Markov Models

- Inference tasks:
-given parameters of a model, compute probability of a particular output sequence.
-Figure out the distribution over hidden states of the last latent variable at the end of the sequence.

https://en.wikipedia.org/wiki/Hidden Markov model

Graphical models

- "Graphical" in the sense of "graph theory"
- A graphical model is a compact representation of a probability distribution over n variables x_{1}, \ldots, x_{n}.
- When using a directed acyclic graph, is known as a Bayesian or belief network.
- When using an undirected graph, is known as a Markov random field

Bayesian or Belief networks

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} \mid \text { parents of } x_{i}\right)
$$

- Each directed edge from y to x represents a conditional probability $p(y \mid x)$.
- A variable without any in-edges has an unconditional probability distribution.
- We observe only certain variables, known as "evidence".
- E.g. A doctor observes an ill patient's symptoms

Blum, Hopcroft, Kannan, 2020

- What disease does the patient have?
- What is the probability of a specific disease?

Markov random field

- Given an undirected graph $G=(V, E)$, a set of random variables $X=$ $\left(X_{v}\right)_{v \in V}$ indexed by V form a Markov random field with respect to G if every variable is conditionally independent of all other variables given its neighbors.

Markov random field examples

- Application: Ising model of spin glasses / community detection.
-Each particle x_{1}, \ldots, x_{n} can have a spin ± 1, and the energy of the system is $\exp \left(c \sum_{i \sim j}\left|x_{i}-x_{j}\right|\right)$.
-Minimizing the energy, subject to specified constraints, is a Markov random field.
- Application: Image reconstruction
-Each pixel is a graph vertex, and we may wish nearby pixels to be similar, with some penalty.

