
Overview of Topics
MAT1841 – Fall 2021

Yun William Yu



List of topics

• Random hashing

• Probabilistic streaming and sketching algorithms

• Matrix decompositions (including NMF and probabilistic)

• Random graph theory / percolation theory

• Wavelet bases

• Complexity and entropy

• Nonlinear dimensionality reduction

• Computational topology



Possibly out-of-scope topics (because ML)

These are all super fun topics, but also covered in many other classes. 
Take e.g. Prof. Papyan’s MAT1510 instead: 
https://sites.google.com/view/mat1510

• Clustering

• Linear classifiers

• Kernel methods

• Deep learning

• Graphical models

https://sites.google.com/view/mat1510


Machine Learning

• Intuition: try to learn the underlying probability distribution 
generating the data we care about.

• An algorithm builds a mathematical model based on training data, 
which it uses to make predictions or decisions on new data.

• We say that model parameters are “learned” from the data.

• We focus here on the supervised classification task, though many of 
the other topics in data science are sometimes “considered” ML.



ML: linear classifier

• Given an input vector 𝒙, the 
output 𝑦 = 𝑓 𝒘 ⋅ 𝒙 , where the 
weights 𝒘 are learned from the 
data should match label 𝑙.

• Simple example: 𝑓 𝑎 = 1 if 𝑎 >
𝑡, for some threshold 𝑡, and 0 
otherwise.

–Dividing hyperplane, separating 
classes 0 and 1.

https://en.wikipedia.org/wiki/Linear_classifier

https://en.wikipedia.org/wiki/Linear_classifier


ML: linear classifiers

• Perceptron algorithm

–Technical modification, ෝ𝒙 = (𝒙, 1), ෝ𝒘 = (𝒘,−𝑡), making separating 
hyperplanes go through the origin.

–Initialize with 𝒘 ← 0.

–While there exists 𝒙𝒊 with 𝒙𝒊𝑙𝑖 ⋅ 𝒘 ≤ 0, update 𝒘 ← 𝒘+ 𝒙𝒊𝑙𝑖, where 
𝑙𝑖 = {−1, 1} is class label.

• SVM (Support Vector Machine)

–Tries to find the maximum-margin hyperplane, not just any 
hyperplane (like perceptron).



ML: kernel trick

• Data may not be linearly separable

• But we can often map the data to another space where it is linearly separable.

• E.g. 𝜑 𝑥1, 𝑥2 = 𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2

• Kernel: 𝐾 𝒙, 𝒚 = 𝜑 𝒙 ⋅ 𝜑 𝒚 = 𝒙 ⋅ 𝒚 + 𝒙 2 𝒚 2

• Careful choice of map allows using kernel function instead of explicit mapping.

https://en.wikipedia.org/wiki/Kernel_method

https://en.wikipedia.org/wiki/Kernel_method


ML: deep learning

• Chaining together a bunch of simple 
nonlinear classifiers empirically 
improves classification.

• Each node represents a linear 
combination of parent node values, 
modified by a nonlinearity (often a 
ReLU).

• Empirically, using a deep network 
allows us to use a much simpler 
nonlinearity than more complicated 
kernel functions.



ML: back-propagation

• The network can be thought of as a function
𝑔 𝑥 = 𝑓𝐿 𝑊𝐿𝑓𝐿−1 𝑊𝐿−1⋯𝑓1 𝑊1𝑥 ⋯

where, 𝑓𝑙 is the nonlinearity, and 𝑊𝑙 is a weights matrix at layer at layer 𝑙.

• We also have a loss/cost function 𝐶 𝑦𝑖 , 𝑔 𝑥𝑖 , where 𝑦𝑖 is the true label of 
a data point 𝑥𝑖.

• We want to use gradient descent to optimize the weights based on the 
training data.

• Each individual component of the gradient 𝜕𝐶/𝜕𝑤𝑗𝑘
𝑙 can be computed via 

the chain rule.
• The back-propagation algorithm avoids duplicate calculations by computing 

the gradient of each layer from back to front. (i.e. starting from the output 
layer)



Clustering
• Grouping together data points into 

“meaningful” groups.

• Also known variously as partitioning, 
community detection, finding spin 
glass states, etc.

• Two major versions

–High-dimensional space (not just 
vector spaces)

–On a graph

• Hard and soft (depending on group 
assignment)

https://en.wikipedia.org/wiki/K-means_clustering

https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png

https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:Zachary%27s_karate_club.png


K-means

• Given a set of observations (𝑥1, … , 𝑥𝑛), 𝑥𝑖 ∈ ℝ𝑑, find a partition 𝑺 =
𝑆1, … , 𝑆𝑘 that minimizes squared distances to cluster centers.

• Naïve k-means algorithm

–Initialize means (e.g. with random choice)

–Iterate until convergence:
• Assign each observation to nearest cluster center

• Calculate new cluster means based on assignment.

• Converges if using Euclidean distance



Hierarchical clustering

• E.g. on a graph, repeatedly cut the graph in half to minimize the cut 
weight.

• Alternately, iteratively link together pairs of points that are closest 
together.

https://en.wikipedia.org/wiki/Hierarchical_clustering

https://en.wikipedia.org/wiki/Hierarchical_clustering


Scoring functions

• E.g. Girvan-Newman modularity.

–The fraction of edges within clusters minus the expected fraction if 
edges were distributed at random (under several different random 
graph models).

• Related to Hamiltonian of spin glass in physics. (i.e. energy of a 
system where adjacent nodes want the same spin).

• Cluster scoring function independent of number of clusters. Often 
paired with a hierarchical clustering algorithm to allow choosing the 
correct level.



(Gaussian) mixture models

• Recall we covered a simple Gaussian mixture model where we 
assumed our dataset was generated by a combination of different 
radially symmetric Gaussians.

• In general, let 𝑝 𝜃 = σ𝑖=1
𝐾 𝜙𝑖𝒩 𝜇𝑖 , Σ𝑖 , where 𝜙𝑖 is a weight 

associated with each multivariate Gaussian distribution 𝒩 𝜇𝑖 , Σ𝑖 .

• How can we estimate 𝑝 𝜃 from a bunch of samples drawn from it?



Expectation-maximization iterative algorithm

• One commonly used iterative technique to fit parameters 𝜃 and 
missing latent variables 𝑍 is the EM-algorithm.

• Algorithm:

–Initialize parameters 𝜃 to random values

–Compute the probability of each possible value of 𝑍, given 𝜃 (E-step).

–Then, use the just-computed values of 𝑍 to compute a better estimate 
for the parameters 𝜃 (M-step)

–Iterate the last two steps until convergence.



Hidden Markov models (HMM)

• Let 𝑋𝑛 and 𝑌𝑛 be discrete-time stochastic processes  and 𝑛 ≥ 1. The 
pair (𝑋𝑛, 𝑌𝑛) is a Hidden Markov Model if 𝑋𝑛 is a Markov process and 
not directed observable and 𝑃 𝑌𝑛 ∈ 𝐴 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 =
𝑃 𝑌𝑛 ∈ 𝐴 𝑋𝑛 = 𝑥𝑛 .

• Generalization of a mixture model where the hidden (latent) variables 
controlling the mixture component are related through a Markov 
chain instead of independent.

• System being modelled is assumed to be a Markov process with 
unobservable (hidden) states.

• Can be learned using a variation of the EM algorithm.



Hidden Markov Models

• Inference tasks:

–given parameters of a model, compute probability of a particular 
output sequence.

–Figure out the distribution over hidden states of the last latent 
variable at the end of the sequence.

https://en.wikipedia.org/wiki/Hidden_Markov_modelBlum, Hopcroft, Kannan, 2020

https://en.wikipedia.org/wiki/Hidden_Markov_model


Graphical models

• “Graphical” in the sense of “graph theory”

• A graphical model is a compact representation of a probability 
distribution over 𝑛 variables 𝑥1, … , 𝑥𝑛.

• When using a directed acyclic graph, is known as a Bayesian or belief 
network.

• When using an undirected graph, is known as a Markov random field 



Bayesian or Belief networks

𝑝 𝑥1, … , 𝑥𝑛 = Π𝑖=1
𝑛 𝑝 𝑥𝑖 parents of 𝑥𝑖

• Each directed edge from 𝑦 to 𝑥 represents a 
conditional probability 𝑝 𝑦 𝑥 .

• A variable without any in-edges has an 
unconditional probability distribution.

• We observe only certain variables, known as 
“evidence”.

• E.g. A doctor observes an ill patient’s 
symptoms
– What disease does the patient have?

– What is the probability of a specific disease?

Blum, Hopcroft, Kannan, 2020



Markov random field

• Given an undirected graph 𝐺 = 𝑉, 𝐸 , a set of random variables 𝑋 =
𝑋𝑣 𝑣∈𝑉 indexed by 𝑉 form a Markov random field with respect to 𝐺

if every variable is conditionally independent of all other variables 
given its neighbors.

https://en.wikipedia.org/wiki/Markov_random_field

https://en.wikipedia.org/wiki/Markov_random_field


Markov random field examples

• Application: Ising model of spin glasses / community detection.

–Each particle 𝑥1, … , 𝑥𝑛 can have a spin ±1, and the energy of the 
system is exp 𝑐 σ𝑖~𝑗 𝑥𝑖 − 𝑥𝑗 .

–Minimizing the energy, subject to specified constraints, is a Markov 
random field.

• Application: Image reconstruction

–Each pixel is a graph vertex, and we may wish nearby pixels to be 
similar, with some penalty.



List of topics

• Random hashing

• Probabilistic streaming and sketching algorithms

• Matrix decompositions (including NMF and probabilistic)

• Random graph theory / percolation theory

• Wavelet bases

• Complexity and entropy

• Nonlinear dimensionality reduction

• Computational topology



Random hashing

• Real data has all kinds of often unknown probability distributions

• Two approaches to handling large data:
• Try to understand the distributions it comes from (ML)

• Force it into a particular distribution that we can reason about (hashing and 
projections)

• An idealized oracle hash function 𝑓: 𝑈 → [0,1) maps each item in 𝑈
to a uniform random number between 0 and 1.

• Such an oracle would however be expensive to store.

• Can we approximate an idealized hash function with less 
randomness?



Sketching algorithms

• Sub-linear space algorithms

• Family of algorithms for representing big data as small probabilistic 
data structures called "sketches"

• Fast accurate estimates of cardinality, quantiles, frequency 
distributions, set membership, majority element, etc.

• Widely used: routers, databases, search, etc.

• Also used in software for (meta)genome distance approximation, 
including Mash and Dashing.



Count Distinct Problem
• How many distinct items exist in a list? [Flajolet, 

Martin, Ziv Bar-Yossef]
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• Expected minimum is about 
1

𝑛+1
, so we need 

𝑂(log(𝑛)) bits of storage.



(Hyper)LogLog counting [Flajolet, et 
al]

• Only need to store the order of magnitude to get a 
good estimate, so can compress hashed values.

• With some correction terms, get errors that are 

𝑂
1

𝑘
, where 𝑘 is number of buckets / iterations.

• But need only 𝑂(log log 𝑛 ) space.
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HyperLogLog set operations
• Union cardinality

• Cardinality of the union of sets is lossless with HLL
• Determine the largest value for each bucket (iteration)
• Estimate cardinality using the new sketch
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• Intersection cardinality
– Use inclusion-exclusion principle: 𝐴 ∩ 𝐵 = 𝐴 + |𝐵| − |𝐴 ∪ 𝐵|
– Only accurate if the union and intersection cardinalities are comparable.
– Complexity grows exponentially with number of sets

https://research.neustar.biz/2012/12/17/hll-intersections-2/



Jaccard index [Jaccard, 1902]
• Measures the 

similarity between 
two sets by

𝐽 𝐴, 𝐵 =
|𝐴∩𝐵|

𝐴∪𝐵
.

28



MinHash [Broder, 1997]

𝑃𝑟𝑜𝑏 min 𝐴 = min 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 𝐽(𝐴, 𝐵)
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Can estimate Jaccard index from empirical probabilities!



MinHash [Broder, 1997]

𝑃𝑟𝑜𝑏 min 𝐴 = min 𝐵 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 𝐽(𝐴, 𝐵)
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𝑶 𝒍𝒐𝒈 𝒏 𝒃𝒊𝒕𝒔

Can estimate Jaccard index from empirical probabilities!

Minimum Hash 1 for sets A and B

Minimum Hash 2 for sets A and B

Minimum Hash 3 for sets A and B
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MinHash: a worked example
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Turnstile streams

• Begin with an 𝑛 length vector 𝑥 initialized to 0.

• Stream in a set of updates in the form {𝑖, 𝑣}, where 𝑖 ∈ {1, … , 𝑛} and 
𝑣. For each update set  𝑥𝑖 ← 𝑥𝑖 + 𝑣.

• After streaming, return approximately 𝑓(𝑥) for some 𝑓. Ideally, for 
some 𝑓, do not need to store all of 𝑥. Examples:

–𝑝-norm

–Largest entries (heavy hitters)



AMS Sketch: 𝐹2 = 𝑥 2
2

• Let Π =
1

𝑚

±1 ⋯ ±1
⋮ ⋱ ⋮
±1 ⋯ ±1

∈ ℝ𝑚×𝑛, where each row is chosen 

pseudorandomly by a 4-wise independent hash function, so the 
matrix can be represented in 𝑂(𝑚 log 𝑛) bits.

• Store 𝑦 ← 𝑦 + 𝑣Πi where Π𝑖 is the 𝑖th column.

• Then 𝑦 2
2 is an estimator of 𝑥 2

2.

• Requires 𝑂
1

𝜖2
log

1

𝛿
space to estimate with 1 − 𝛿 probability to 

within 𝜖 relative error.



Nonnegative matrix factorization

• Consider the Topic Modelling problem

–Suppose there exist 𝑟 topics and and 𝑛 documents, which are a mixture of the 
topics, determining the probability distribution of words (or phrases) in the 
document.

–We want to determine both the topics that exist, as well as what topics the 
documents are mixtures of.



NMF (continued)

• Cannot use SVD for topic modelling because some of the low-rank 
“topics” will have negative numbers of particular words.

• Hence, we need non-negative matrix factorization

• i.e. decompose a matrix 𝐴 = 𝐵𝐶, where all entries are non-negative, 
and the columns of 𝐵 and 𝐶 sum to 1.

• Algorithms for NMF are much more complicated than SVD, but can be 
done in 𝑂 𝑝𝑜𝑙𝑦 𝑟 time, where 𝑟 is the rank of the matrix.



Random graphs

• Networks of connected nodes show up often

–Electrical grids

–Social networks

–Protein interaction networks

• Real-world networks can be analyzed using things like graph 
partitioning, or random walks on a particular network. However, we 
may also be interested in modelling the generation of the network 
itself.



Random graphs – Erdos-Renyi

• 𝐺 𝑛, 𝑝 model, where 𝑛 is the number of vertices, and 𝑝 is the edge 
probability.

• Degree is tightly concentrated around 𝑛𝑝, and in fact binomial with 
mean 𝑛𝑝.

• Has sudden phase transition in number of connected components at 
expected degree 𝑑 = 1.

• Degree of separation also has a sharp threshold.

• Has related applications in designing CNF solvers for SAT problems.



Percolation Theory and random graphs

• Suppose you have an alloy of an electrical conductor and an insulator, 
with the atoms intermingled in the form of a cable.

• So long as you have a path from one end of the cable to the other 
composed entirely of conductive atoms, the cable itself is conductive.

• How much insulator can you put into the cable while it remains 
conductive?



Random graphs – Preferential attachment

• Real social networks however do not look 
like Erdos-Renyi graphs.

• One easy way to see this is to look at the 
degree distribution.

• Preferential attachment (rich get richer) is 
one common model that promotes both 
small-world graphs and the long-tail 
behavior of real social networks.

Newman, PNAS, 2004

Blum, Hopcroft, Kannan, 2020



Random graphs – Conf-model

• But what about networks whose properties we have trouble 
approximating using a simple model?

• Can we still generate a random network with e.g. the same degree 
distribution as a real one?

• One way to do this is the configuration random model. Start with an 
existing network (or set of degree distributions), cut each edge in half, 
and then randomly reattach edge-halves.

• Used in the null model for Girvan-Newman modularity clustering 
score.



Wavelets: background (FT)

• Recall the Fourier transform, which gives a basis in terms of sines and 
cosines for the space of functions.

–Each of the basis functions contains information localized in 
frequency, but not in space/time.

–Hard to represent discontinuities.

https://en.wikipedia.org/wiki/Fourier_transform

https://en.wikipedia.org/wiki/Fourier_transform


Wavelets: motivation

• Want an easy-to-compute-with orthogonal basis set of functions that 
have finite support.

• Finite support makes it easier to represent functions that have 
discontinuities.

• The basis should be composed of simple pieces, like sines and cosines 
for the Fourier transform.



Wavelets: dilations

• Dilations are mappings that scale all 
distances by the same factor.

• A dilation equation is a function 
defined in terms of linear, scaled, 
shifted versions of itself.

𝑓 𝑥 = 𝑓 2𝑥 + 𝑓(2𝑥 − 1)

𝑓 𝑥

=
1

2
𝑓 2𝑥 + 𝑓 2𝑥 − 1 +

1

2
𝑓 2𝑥 − 2

Blum, Hopcroft, Kannan, 2020



Wavelets: construction

• Start from a dilation equation, and a solution 𝜙(𝑥)
• We define a 2D set of scaling functions 

𝜙𝑗𝑘 𝑥 = 𝜙(2𝑗𝑥 − 𝑘)

• For a fixed value of 𝑗, the 𝜙𝑗𝑘 span a space 𝑉𝑗.

• If 𝜙(𝑥) satisfies a dilation equation of the form

𝜙 𝑥 = ෍

𝑘=0

𝑑−1

𝑐𝑘𝜙 2𝑥 − 𝑘

Then each 𝜙𝑗𝑘 is a linear combination of 𝜙𝑗+1,𝑘’s.

• Thus 𝑉0 ⊆ 𝑉1 ⊆ 𝑉2 ⊆ ⋯
• We can then approximate a function by choosing 𝑉𝑘



Wavelets: Haar wavelet

𝑓 𝑥 = 𝑓 2𝑥 + 𝑓(2𝑥 − 1)

𝜙 𝑥 = 1 if 𝑥 ∈ [0,1]

𝜙𝑗𝑘 𝑥 = 𝜙(2𝑗𝑥 − 𝑘)

Blum, Hopcroft, Kannan, 2020



Wavelets: Haar wavelet

• But the set of functions given above is not orthogonal, so 
reduce set to a linearly ind. set.

• The Haar wavelet is defined by the following basic functions, 
but with certain members that are linearly dependent 
removed.

Blum, Hopcroft, Kannan, 2020



Wavelets: applications

• Applications

–Data compression

–Signal processing

–Power-line communication protocols

• Issues

–Often need to design a wavelet system specific to the problem. i.e.
Haar is often not the most natural.

–Smoothness of the basis functions can sometimes be desirable.



Nonlinear dimensionality reduction

• SVD and related methods like 
PCA allows you to reduce the 
dimensionality of a dataset 
down linearly.

• What if your dataset is actually 
nonlinear?

• What techniques do we have to 
reduce dimensionality while 
preserving structure?

–E.g. t-SNE and UMAP, among 
others.

https://en.wikipedia.org/wiki/Nonlinear_dimension
ality_reduction#/media/File:Lle_hlle_swissroll.png



Persistent homology

• Method for computing topological features of a space at different 
spatial resolutions.

• Represent a data cloud as a simplicial complex.

• A distance function specifying links between neighboring points 
corresponds to a filtration on the simplicial complex.

• We can then ask questions about the simplicial homology at a 
particular resolution.

• Persistent homologies are the long-lived features.



Persistent homology: math

• Let 𝑆 be a simplicial complex.

• A simplicial k-chain: σ𝑖=1
𝑁 𝑐𝑖 𝜎𝑖 where 𝑐𝑖 ∈ ℤ and 𝜎𝑖 is an oriented 𝑘-simplex (and −𝜎𝑖 is 

the opposite oriented simplex).

• The free abelian group of 𝑘-chains on 𝑆 is written 𝐶𝑘, and has basis in 1-1 
correspondence with 𝑘-simplices.

• The boundary operator 𝑑𝑘: 𝐶𝑘 → 𝐶𝑘−1 is a homomorphism given by 𝑑𝑘 𝜎 =
σ𝑖=1
𝑘 −1 𝑖(𝜎 Ƹ𝑖), where 𝜎 Ƹ𝑖 is the 𝑖th face of 𝜎, obtained by deleting its 𝑖th vertex.

• Let 𝑍𝑘 = ker 𝛿𝑘, the subgroup of cycles.

• Let 𝐵𝑘 = im 𝛿𝑘+1, the subgroup of boundaries.

• The 𝑘th homology group is defined as the quotient abelian group 𝐻𝑘 𝑆 = 𝑍𝑘/𝐵𝑘, which 
is nonzero when there are 𝑘-cycles on 𝑆 which are not boundaries. (i.e. 𝑘-dim holes in 
the complex)

• The 𝑘th Betti number of 𝑆 is 𝛽𝑘 = rank 𝐻𝑘 𝑆 .



Persistent homology: visualization

• Example: connected components (𝛽0), loops (𝛽1), 
higher-dimensional holes (𝛽𝑖).

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: connected components

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: loops

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: signals

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0


Persistent homology: applications

• Compression of signals and images via storing only persistence 
diagram (keeping track of critical points in the signal), or maybe even 
only a subset of the persistence values of highest magnitude.

• Using the persistence diagram as an additional global feature of a 
dataset, e.g. as input into a machine learning pipeline.

–i.e. are the persistent features of a data cloud of gut microbiome 
compositions correlated with the healthiness of the individual.


