Recall: $S V D_{s}$ are one way to approximate a matrix (MAT/850)
Today: Sampling for matrix products.
Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$. We want to approximate $A B, \in \mathbb{R}^{m \times p}$
Naive approach: Matrix multiplication $O(\mathrm{mnp})$ time. $\left(\begin{array}{cc}\text { maybe slightly faster } \\ \text { with } & \text { Strassen, etc. }\end{array}\right)$
Let $A(;, x)$ be the kith column of A $B(k,:)$ be the kith row of B.
Then $A B=\sum_{k=1}^{n} A(i, k) B(k,:) \quad$ (outer prod.)

$$
\left.m[]^{p}\right]^{p}
$$

Let's sample $A B$ by tatting components with prov. $\rho_{k}>0 . \leftarrow$ arbitrary for now.
i.e. Let $z=k$ w.p. p_{k} for $k \in[n]$, a rev.

Define: $\quad X=\frac{1}{p_{z}} A(:, z) B(z,:)$, a matrix r.v.
Then the entry-wise expectation

$$
\mathbb{E} X=\sum_{k=1}^{n} \frac{P(z=k)}{\frac{1}{\rho_{k}}} A(i, k) B(k,:)=\sum_{k=1}^{n} A(i, k) B(k,)=A B
$$

Define: $\operatorname{Var}(X)=\mathbb{E}\left(\|A B-X\|_{F}^{2}\right)$, the entry - wise variance.
Then $\operatorname{Var}(X)=\sum_{i=1}^{m} \sum_{j=1}^{p} \operatorname{Var}\left(x_{i j}\right)=\sum_{i j} \mathbb{E}\left(x_{i j}{ }^{2}\right)-\mathbb{E}\left(x_{i j}\right)^{2}=\left(\sum_{i j} \sum_{k=1}^{n} p_{k} \cdot \frac{1}{p_{k}{ }^{2}} a_{i k}{ }^{2} b_{k j}{ }^{2}\right) \underbrace{\|A A B\|_{f}{ }^{2}}_{\text {does nt }}$
Went to choose P_{k} to minimize variance. minimizing variance

$$
\sum_{i j} \sum_{k} p_{k} \cdot \frac{1}{p_{k}^{2}} a_{i k}^{2} b_{k j}^{2}=\sum_{k} \frac{1}{p_{k}}\left(\sum_{i} a_{i k}^{2}\right)\left(\sum_{j} b_{k j}^{2}\right)=\sum_{k} \frac{1}{p_{k}}|A(:, k)|^{2}|B(k,:)|^{2}
$$

Euclidean norm
Lemma : Let $f\left(p_{1}, \ldots, p_{k}\right)=\sum_{k=1}^{n} \frac{c_{k}}{p_{k}}$, where $c_{k} \geq 0$ and $p_{k}>0$.
Then subject to the condition $p_{1}+\cdots+p_{k}=1$, the minimum of f is achieved by $P_{k} \sim \sqrt{c_{k}}$.
is achieved by $p_{k} \sim \sqrt{c_{k}}$.
proof. WLOG say $c_{1}>0$ and remove p_{1} by $f\left(p_{2}, \ldots, p_{n}\right)=\frac{c_{1}}{1-\left(p_{2}+\ldots p_{n}\right)}+\sum_{k=2}^{n} \frac{c_{k}}{p_{k}}$. $\quad\binom{$ an unconstrated }{ optimization }

$$
\begin{aligned}
& \frac{\partial f}{\partial p_{k}}=\frac{c_{1}}{\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{2}}-\frac{c_{k}}{p_{k}{ }^{2}}=0 \\
& \quad \Rightarrow \frac{p_{k}}{1-\left(p_{2}+\cdots+p_{n}\right)}=\sqrt{\frac{c_{k}}{c_{1}}} \Rightarrow p_{k}=\sqrt{c_{k}} \cdot \frac{1-\left(p_{2}+\cdots+p_{n}\right)}{\sqrt{c_{1}}} \forall k \neq 1 .
\end{aligned}
$$

Thus, we want to pick $P_{k} \sim|A(:, k)||B(k,=)|$.
Note: When $B=A^{\top}, p_{k} \sim|A(i, k)|^{2} \leftarrow$ squared length of cols
Even if $B \neq A^{\top}$, can still use as easy to analyze upper bound.

$$
\begin{aligned}
& \text { Use } p_{k}=\frac{|A(:, k)|^{2}}{\|A\|_{F}^{2}} \\
& \Rightarrow \mathbb{E}\left(\|A B-X\|_{F}^{2}\right)=\operatorname{Var}(x) \leq\|A\|_{F}^{2} \sum_{k}\left|B\left(k_{1}:\right)\right|^{2}=\|A\|_{F}^{2}\|B\|_{F}^{2} .
\end{aligned}
$$

Repent with s ind. trials, getting X_{1}, \ldots, X_{s}.
Then $\operatorname{Var}(\bar{X})=\frac{1}{s} \sum_{i=1}^{s} X_{i}=\frac{1}{s} \operatorname{Var}(X) \leq \frac{1}{s}\|A\|_{F}^{2}\|B\|_{p}^{2}$.

$$
\begin{aligned}
& \left.\left.\left[\begin{array}{c}
A \\
m \times n
\end{array}\right]\left[\begin{array}{c}
B \\
n<p
\end{array}\right] \approx\left[\begin{array}{c}
C \\
\text { Scaled } \\
\text { Sampled } \\
\text { cols of } \\
A
\end{array}\right] \begin{array}{c}
R \\
m \times s
\end{array}\right] \begin{array}{c}
R \\
\left.\begin{array}{c}
\text { Corresponding } \\
\text { scaled } \\
\\
B \times p
\end{array}\right] \\
s \times p
\end{array}\right] \\
& \frac{1}{s} \sum_{i=1}^{s} X_{i}=\frac{1}{s}\left(\frac{A\left(:, k_{1}\right) B\left(k_{1},:\right)}{P_{k_{1}}}+\cdots+\frac{A\left(:, k_{s}\right) B\left(k_{s} ;\right)}{P_{k_{s}}}\right)=C R
\end{aligned}
$$

C has $c_{0} l_{s} \frac{A\left(i, k_{i}\right)}{\sqrt{s p_{k_{i}}}}$
Note: $\mathbb{E}\left(C C^{\top}\right)=A A^{\top}$
R has rows $\frac{\left.B\left(k_{i}\right):\right)}{\sqrt{5 p_{k_{i}}}}$
Tho 6.5 Suppose $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$. The product $A B$ can be estimated by $C R$ given above, and the error is bounded by

$$
\mathbb{E}\left(\|A B-C R\|_{F}^{2}\right) \leq \frac{\|A\|_{F}^{2}\|B\|_{F}^{2}}{S}
$$

$$
\mathbb{E}\left(\|A B-C R\|_{f}^{2}\right) \leq \frac{\|A\|_{F}^{2}\|B\|_{F}^{2}}{S}
$$

To ensure $\mathbb{E}\left(\|A B-C R\|_{F}^{2}\right) \leq \varepsilon^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}$, suffices to choose $s \geq \frac{1}{\varepsilon^{2}}$.
$\Rightarrow C R$ car be computed in $O\left(\frac{1}{\varepsilon^{2}} m p+m n+n_{p}\right)$ time.

$$
\prod_{\substack{\text { compute } C R}}^{\sum_{\text {sample }}} \begin{aligned}
& \text { sample of } A \\
& \text { of } B
\end{aligned}
$$

When is this a good estimate?
Consider case $B=A^{t}$ for simplicity.
Then if $A=I,\left\|I I^{T}\right\|_{f}^{2}=n$, but $\frac{\|I\|_{f}{ }^{2}\|I\|_{f}{ }^{2}}{s}=\frac{n^{2}}{5}$,
so need $s>_{n}$ for bound to be useful,
Trivial estuack of 0 -matrix gives error $\left\|A A^{\top}\right\|_{p}^{i}$, so need to be at lent as good
Analysis via SVD
When is SVD approximation good? When top P singular values take up a $\left(A=U \Sigma V^{\top}\right) \quad$ large constant fraction of Frobering mass.
Recall: $\|A\|_{F}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}$, where $r=\operatorname{rak}(A) \quad$ and $\quad \Sigma=\left[\begin{array}{lll}\sigma_{1} & & \\ & n_{0} & \sigma_{r}\end{array}\right]$.
Suppose $\exists 0<c<1$ and a small integer p sit. for a matrix A,

$$
\sigma_{1}^{2}+\cdots+\sigma_{p}^{2} \geqslant c\left(\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}\right) .
$$

Note $\left\|A A^{\top}\right\|_{F}^{2}=\sum_{t=1}^{r} \sigma_{t}^{4}$ and $\|A\|_{f}^{2}=\sum_{t=1}^{r} \sigma_{t}^{2}$.
Then

$$
I \mathbb{I}\left(\left\|A A^{\top}-C R\right\|_{F}^{2}\right) \leq \frac{\|A\|_{F}^{2}\left\|A^{\top}\right\|_{F}^{2}}{S}
$$

For approx. to be gond, we want $\frac{\|A\|_{f}^{2}\left\|A^{\top}\right\|_{f}^{3}}{5} \leq\left\|A A^{\top}\right\|_{F}^{2}$
because max is when $\sigma_{1}=\sigma_{2}=\ldots=\sigma_{r}$ $\frac{r^{2}}{r}=r$.

$$
\begin{aligned}
& \Leftrightarrow \quad\left(\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}\right)^{2} \leq s\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right) \quad \max ^{\left(\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}\right)^{2}} \begin{array}{l}
\left(\sigma_{1}{ }^{2}+\cdots+\sigma_{r}^{4}\right)
\end{array} \quad \text { So not } \\
& \Leftrightarrow \quad s \geq \frac{\left(\sigma_{1}^{2}+\ldots+\sigma_{r}^{2}\right)^{2}}{\left(\sigma_{1}^{4}+\ldots+r_{r}^{4}\right)} \quad \text { goof bound. }
\end{aligned}
$$

But $\frac{\left(\sigma_{1}^{2}+\cdots t_{r}^{2}\right)^{2}}{\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)} \leq \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{p}^{2}\right)^{2}}{c^{2}\left(\sigma_{1}^{4}+\cdots+\sigma_{r}^{4}\right)} \leq \frac{\left(\sigma_{1}^{2}+\cdots+\sigma_{p}^{2}\right)^{2}}{c^{2}\left(\sigma_{1}^{4}+\cdots+\sigma_{p}^{4}\right)} \leq \frac{p}{c^{2}}$.
Thus, if $s \geq \frac{p}{c^{2}}$, then appose. is better than 0 -matrix.
Thus, we don't need to sample that many colons if the mass is concentrated

Thus, we don't need to sample that many columns if the mass is concentrated in a few singular vectors.

Intuition is that we are sampling according to squared col length, so we will probably pick out cols with large singular components.
Matrix sketch
If $A \in \mathbb{R}^{m \times n}$ is a data matrix \quad sample $\left[\begin{array}{l}\text { feature } \\ \text { (erg. exparsyln of maNA } \\ \text { in a cell }\end{array}\right.$,
we may want a low-dimansional representation.
SVD $A=U \Sigma V^{\top}$ is a natural solution, but takes $O\left(m n{ }^{\circ} \min (n, m)\right) \approx O\left(n^{3}\right)$ L also, destroys sparsity and interpretability be cause singular vectors are mixes of samples. What about sketching by sampling cols?
The 6.9 Let $A \in \mathbb{R}^{m \times n}$ and $r, s \in \mathbb{Z}^{+}$.
Let $C \in \mathbb{R}^{m \times s}$ of s cols of A picked $v \pi_{a}$ length square sampling Let $R \in \mathbb{R}^{r \times n}$ of r rows

Then we can find from $C \notin$ a matrix $U \in \mathbb{R}^{j \times r}$ sit.

$$
\mathbb{E}\left(\|A-c u R\|_{2}^{2}\right) \leq\|A\|_{F}^{2}\left(\frac{2}{\sqrt{r}}+\frac{2 r}{s}\right)
$$

If we fix s, we can minimize error with $r=s^{2 / 3}$ Choose $s=\frac{1}{\varepsilon^{3}}$ and $r=\frac{1}{\varepsilon^{2}}$. Then $\mathbb{E}\left(\|A-C U R\|_{2}^{2}\right)=O(\varepsilon)\|A\|_{F}{ }^{2}$.
Recall: $\left\|A-A_{k}\right\|_{2}^{2}=\sigma_{k+1}^{2} \leq \frac{\sigma_{1}^{2}+\cdots+\sigma_{k}^{2}}{k} \leq \frac{\|A\|_{F}^{2}}{k}$. (\quad similar. $\left.\begin{array}{c}\text { form }\end{array}\right)$
bet ranh-h approx
via SUD

$$
\left[\begin{array}{c}
A \\
n \times m
\end{array}\right]=\left[\begin{array}{c}
\text { Sanple } \\
\text { cols } \\
n \times s
\end{array}\right]\left[\begin{array}{c}
\text { multi, } 1 \text { ion } \\
s \times r
\end{array}\right]\left[\begin{array}{c}
\text { sample } n m s \\
r \times m
\end{array}\right]
$$

C
 psendo-invasc R^{+}

operate ((ii) If $\vec{x} \perp R^{\top} y \quad \forall \vec{y}$, then $p_{\vec{x}}=0$
If $R R^{\top}$ not inarible, let $\operatorname{rank}\left(R R^{T}\right)=r$ and $R R^{T}=\sum_{t=1}^{r} \sigma_{t} \vec{u}_{t} \vec{v}_{t}^{T}$ the $S V D$.
Then $P=R^{\top} \underbrace{\left(\sum_{t=1}^{r} \frac{1}{r_{t}^{2}} \vec{u}_{t} \vec{v}_{t}^{\top}\right) R}_{R^{+} \in R^{m \times r}} \underbrace{\text { satins }}_{\in R^{r \times m}}$
$\underbrace{}_{\text {Pop. }} 6.7 A \approx A P$ and $\mathbb{E}\left(\|A-A P\|_{2}^{2}\right) \leq \frac{1}{\sqrt{r}}\|A\|_{F}^{2}$
(pout omistal)
Thus, we can sample S cols of A to form C, and choose corresponding
 can decompose into s rows of R^{+}, multiplied by R.

Matrix sketch follows from sampled matrix multiplication on AP.

