Problem Set 9

[Your name] and [student ID]
MAT1841-2021

Problem 1 (40 points). Let X be a finite set of points in some Euclidean space and let $r \geq 0$. Prove that $V R(X, r) \subset C e c h(X, \sqrt{2} r)$.

Problem 2 (30 points). If K is a p-dimensional simplicial complex and for each k, n_{k} is the number of k-simplices in K, then the Euler number of K is given by

$$
\chi(K)=\sum_{k=0}^{p}(-1)^{p} n_{p} .
$$

Direclty show that any two triangulations of the circle S^{1} have the same Euler number.
Problem 3 (30 points). Construct a simplicial complex with $\beta_{2}=3, \beta_{1}=2, \beta_{0}=1$. Prove your construction is correct.

