Problem Set 7

[Your name] and [student ID] MAT1850-2020 (Prof. Yun William Yu)

Problem 1 [Vol 2; 3.2] (5 points). Let $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the function defined by

 $f(A) = A^3.$

Prove that

$$Df_A(H) = A^2H + AHA + HA^2$$

for all $A, H \in \mathbb{R}^{n \times n}$.

Problem 2 [Vol 2: 3.4] (10 points). Recall that $\mathfrak{so}(n)$ denotes the vector space of real skew symmetric $n \times n$ matrices $(B^T = -B)$. Let $C : \mathfrak{so}(n) \to \mathbb{R}^{n \times n}$ be the function given by

$$C(B) = (I - B)(I + B)^{-1}$$

- 1. Prove that if B is skew-symmetric, then I B and I + B are invertible, and so C is well-defined. It has come to my attention that this is a repeat of a previous homework problem.
- 2. Prove that

$$dC(B)(A) = -[I + (I - B)(I + B)^{-1}]A(I + B)^{-1} = -2(I + B)^{-1}A(I + B)^{-1}$$

3. Prove that dC(B) is injective for every skew-symmetric matrix B.

Problem 3 [Vol 2: 3.6] (20 points).

1. Consider the function g defined for all $A \in \mathbf{GL}(n, \mathbb{R})$, that is, all $n \times n$ real invertible matrices, given by

$$g(A) = \det(A).$$

Prove that

$$dg_A(X) = \det(A)\operatorname{tr}(A^{-1}X)$$

for all $n \times n$ real matrices X.

2. Consider the function f defined for all $A \in \mathbf{GL}^+(n, \mathbb{R}, \text{ that is, } n \times n \text{ real invertible matrices of positive determinants, given by }$

$$f(A) = \log g(A) = \log \det(A).$$

Prove that

$$df_A(X) = \operatorname{tr}(A^{-1}X)$$
$$D^2 f(A)(X_1, X_2) = -\operatorname{tr}(A^{-1}X_1A^{-1}X_2),$$

for all $n \times n$ real matrices X, X_1, X_2 .

Problem 4 [Vol 2: 4.1-4.2] (10 points).

1. Find the extrema of the function $J(v_1, v_2) = v_2^2$ on the subset U given by

$$U = \{ (v_1, v_2) \in \mathbb{R}^2 \mid v_1^2 + v_2^2 - 1 = 0 \}$$

$$U = \{ (v_1, v_2) \in \mathbb{R}^2 \mid v_1^2 = 0 \}$$

Problem 5 [Vol 2: 4.3] (20 points). Let A be an $n \times n$ real symmetric matrix, B an $n \times n$ symmetric positive definite matrix, and let $b \in \mathbb{R}^n$.

1. Prove that a necessary condition for the function J given by

$$J(v) = \frac{1}{2}v^{\mathsf{T}}Av - b^{\mathsf{T}}v$$

to have an extremum in $u \in U$, with U defined by

$$U = \{ v \in \mathbb{R}^n \mid v^\mathsf{T} B v = 1 \}$$

is that there is some $\lambda \in \mathbb{R}$ such that

$$Au - b = \lambda Bu$$

2. Prove that for all $(u, \lambda) \in U \times \mathbb{R}$, if $Au - b = \lambda Bu$, then

$$J(v) - J(u) = \frac{1}{2}(v - u)^{\mathsf{T}}(A - \lambda B)(v - u)$$

for all $v \in U$. Can you conclude that u is an extremum of J on U? Explain your reasoning.

Problem 6 [Vol 2: 4.4] (10 points). Let *E* be a normed vector space, and let *U* be a subset of *E* such that for all $u, v \in U$, we have $\frac{u+v}{2} \in U$.

1. Prove that if U is closed, then U is convex. Hint. Every real $\theta \in (0, 1)$ can be written in a unique way as

$$\theta = \sum_{n \ge 1} \alpha_n 2^{-n}$$

with $\alpha_n \in \{0, 1\}$.

2. Does the result in (1) hold if U is not closed?

Problem 7 [Vol 2: 4.7-.48] (15 points).

- 1. Prove that the function $x \mapsto |x|^p$ is convex on \mathbb{R} for all $p \ge 1$.
- 2. Prove that the function $x \mapsto \log x$ is concave on $\{x \in \mathbb{R} \mid x > 0\}$
- 3. Prove that the function $x \mapsto x \log x$ is convex on $\{x \in \mathbb{R} \mid x > 0\}$
- 4. Prove that the function f given by $f(x_1, \ldots, x_n) = \max\{x_1, \ldots, x_n\}$ is convex on \mathbb{R} .
- 5. Prove that the function g given by $g(x_1, \ldots, x_n) = \log(e^{x_1} + \cdots + e^{x_n})$ is convex on \mathbb{R} .

Problem 8 [Vol 2: 4.9] (10 points). You may wish to refer back to Problem 3 [Vol 2: 3.6]. Let f : $\mathbf{GL}^+(n,\mathbb{R}) \to \mathbb{R}$ be given by $f(A) = \log \det(A)$. Assume that A is symmetric positive definite, and let X be a symmetric matrix.

- 1. Prove that the eigenvalues of $A^{-1}X$ are real (even though $A^{-1}X$ may not be symmetric).
- 2. Prove that the eigenvalues of $(A^{-1}X)^2$ are nonnegative. Deduce that

$$D^{2}f(A)(X,X) = -\operatorname{tr}\left((A^{-1}X)^{2}\right) < 0$$

for all nonzero symmetric matrices X and SPD matrices A. Conclude that the function $X \mapsto \log \det X$ is strictly concave on the set of symmetric positive definite matrices.