Problem Set 7

[Your name] and [student ID]
MAT1850-2020 (Prof. Yun William Yu)

Problem 1 [Vol 2; 3.2] (5 points). Let $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ be the function defined by

$$
f(A)=A^{3} .
$$

Prove that

$$
D f_{A}(H)=A^{2} H+A H A+H A^{2}
$$

for all $A, H \in \mathbb{R}^{n \times n}$.
Problem 2 [Vol 2: 3.4] (10 points). Recall that $\mathfrak{s o}(n)$ denotes the vector space of real skew symmetric $n \times n$ matrices $\left(B^{T}=-B\right)$. Let $C: \mathfrak{s o}(n) \rightarrow \mathbb{R}^{n \times n}$ be the function given by

$$
C(B)=(I-B)(I+B)^{-1}
$$

1. Prove that if B is skew symmetric, then $I-B$ and $I+B$ are invertible, and so C is well defined. It has come to my attention that this is a repeat of a previous homework problem.
2. Prove that

$$
d C(B)(A)=-\left[I+(I-B)(I+B)^{-1}\right] A(I+B)^{-1}=-2(I+B)^{-1} A(I+B)^{-1}
$$

3. Prove that $d C(B)$ is injective for every skew-symmetric matrix B.

Problem 3 [Vol 2: 3.6] (20 points).

1. Consider the function g defined for all $A \in \mathbf{G L}(n, \mathbb{R})$, that is, all $n \times n$ real invertible matrices, given by

$$
g(A)=\operatorname{det}(A) .
$$

Prove that

$$
d g_{A}(X)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} X\right)
$$

for all $n \times n$ real matrices X.
2. Consider the function f defined for all $A \in \mathbf{G L}^{+}(n, \mathbb{R}$, that is, $n \times n$ real invertible matrices of positive determinants, given by

$$
f(A)=\log g(A)=\log \operatorname{det}(A) .
$$

Prove that

$$
\begin{aligned}
d f_{A}(X) & =\operatorname{tr}\left(A^{-1} X\right) \\
D^{2} f(A)\left(X_{1}, X_{2}\right) & =-\operatorname{tr}\left(A^{-1} X_{1} A^{-1} X_{2}\right),
\end{aligned}
$$

for all $n \times n$ real matrices X, X_{1}, X_{2}.

Problem 4 [$\mathrm{Vol} 2: 4.1-4.2$ (10 points).

1. Find the extrema of the function $J\left(v_{1}, v_{2}\right)=v_{2}^{2}$ on the subset U given by

$$
U=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1}^{2}+v_{2}^{2}-1=0\right\}
$$

2. Find the extrema of the function $J\left(v_{1}, v_{2}\right)=v_{1}+\left(v_{2}-1\right)^{2}$ on the subset U given by

$$
U=\left\{\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{1}^{2}=0\right\}
$$

Problem 5 [Vol 2: 4.3] (20 points). Let A be an $n \times n$ real symmetric matrix, B an $n \times n$ symmetric positive definite matrix, and let $b \in \mathbb{R}^{n}$.

1. Prove that a necessary condition for the function J given by

$$
J(v)=\frac{1}{2} v^{\boldsymbol{\top}} A v-b^{\boldsymbol{\top}} v
$$

to have an extremum in $u \in U$, with U defined by

$$
U=\left\{v \in \mathbb{R}^{n} \mid v^{\boldsymbol{\top}} B v=1\right\}
$$

is that there is some $\lambda \in \mathbb{R}$ such that

$$
A u-b=\lambda B u
$$

2. Prove that for all $(u, \lambda) \in U \times \mathbb{R}$, if $A u-b=\lambda B u$, then

$$
J(v)-J(u)=\frac{1}{2}(v-u)^{\top}(A-\lambda B)(v-u)
$$

for all $v \in U$. Can you conclude that u is an extremum of J on U ? Explain your reasoning.
Problem 6 [Vol 2: 4.4] (10 points). Let E be a normed vector space, and let U be a subset of E such that for all $u, v \in U$, we have $\frac{u+v}{2} \in U$.

1. Prove that if U is closed, then U is convex.

Hint. Every real $\theta \in(0,1)$ can be written in a unique way as

$$
\theta=\sum_{n \geq 1} \alpha_{n} 2^{-n}
$$

with $\alpha_{n} \in\{0,1\}$.
2. Does the result in (1) hold if U is not closed?

Problem 7 [Vol 2: 4.7-.48] (15 points).

1. Prove that the function $x \mapsto|x|^{p}$ is convex on \mathbb{R} for all $p \geq 1$.
2. Prove that the function $x \mapsto \log x$ is concave on $\{x \in \mathbb{R} \mid x>0\}$
3. Prove that the function $x \mapsto x \log x$ is convex on $\{x \in \mathbb{R} \mid x>0\}$
4. Prove that the function f given by $f\left(x_{1}, \ldots, x_{n}\right)=\max \left\{x_{1}, \ldots, x_{n}\right\}$ is convex on \mathbb{R}.
5. Prove that the function g given by $g\left(x_{1}, \ldots, x_{n}\right)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$ is convex on \mathbb{R}.

Problem 8 [Vol 2: 4.9] (10 points). You may wish to refer back to Problem 3 [Vol 2: 3.6]. Let f : $\mathbf{G L}^{+}(n, \mathbb{R}) \rightarrow \mathbb{R}$ be given by $f(A)=\log \operatorname{det}(A)$. Assume that A is symmetric positive definite, and let X be a symmetric matrix.

1. Prove that the eigenvalues of $A^{-1} X$ are real (even though $A^{-1} X$ may not be symmetric).
2. Prove that the eigenvalues of $\left(A^{-1} X\right)^{2}$ are nonnegative. Deduce that

$$
D^{2} f(A)(X, X)=-\operatorname{tr}\left(\left(A^{-1} X\right)^{2}\right)<0
$$

for all nonzero symmetric matrices X and SPD matrices A. Conclude that the function $X \mapsto \log \operatorname{det} X$ is strictly concave on the set of symmetric positive definite matrices.

