## Problem Set 8

[Your name] and [student ID]
MAT1850-2020 (Prof. Yun William Yu)

Problem 1 [Vol 2; 5.1] (20 points). If $\alpha>0$ and $f(x)=x^{2}-\alpha$, Newton's method yields the sequence

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{\alpha}{x_{k}}\right)
$$

to compute the square root $\sqrt{\alpha}$ of $\alpha$.
(1) Prove that if $x_{0}>0$, then $x_{k}>0$ and

$$
\begin{aligned}
x_{k+1}-\sqrt{\alpha} & =\frac{1}{2 x_{k}}\left(x_{k}-\sqrt{\alpha}\right)^{2} \\
x_{k+2}-x_{k+1} & =\frac{1}{2 x_{k+1}}\left(\alpha-x_{k+1}^{2}\right)
\end{aligned}
$$

for all $k \geq 0$. Deduce that Newton's method converges to $\sqrt{\alpha}$ for any $x_{0}>0$.
(2) Prove that if $x_{0}<0$, then Newton's method converges to $-\sqrt{\alpha}$.

## Problem 2 [Vol 2; 5.2] (20 points).

(1) If $\alpha>0$ and $f(x)=x^{2}-\alpha$, show that the conditions of Theorem 5.1 are satisfied by any $\beta \in(0,1)$ and any $x_{0}$ such that

$$
\left|x_{0}^{2}-\alpha\right| \leq \frac{4 \beta(1-\beta)}{(\beta+2)^{2}} x_{0}^{2}
$$

with

$$
r=\frac{\beta}{\beta+2} x_{0}, \quad M=\frac{\beta+2}{4 x_{0}}
$$

(2) Prove that the maximum of the function defined on $[0,1]$ by

$$
\beta \mapsto \frac{4 \beta(1-\beta)}{(\beta+2)^{2}}
$$

has a maximum for $\beta=2 / 5$. For this value of $\beta$, check that $r=x_{0} / 6, M=3 /\left(5 x_{0}\right)$, and

$$
\frac{6}{7} \alpha \leq x_{0}^{2} \leq \frac{6}{5} \alpha
$$

## Problem 3 [Vol2; 5.4] (15 points).

(1) Show that Newton's method applied to the matrix function

$$
f(X)=A-X^{-1}
$$

with $A$ and $X$ invertible $n \times n$ matrices and started with any $n \times n$ matrix $X_{0}$ yields the sequence ( $X_{k}$ ) with

$$
X_{k+1}=X_{k}\left(2 I-A X_{k}\right), \quad k \geq 0
$$

(2) If we let $R_{k}=I-A X_{k}$, prove that

$$
R_{k+1}=I-\left(I-R_{k}\right)\left(I+R_{k}\right)=R_{k}^{2}
$$

for all $k \geq 0$. Use this to prove that Newton's method converges to $A^{-1}$ iff the spectral radius of $I-X_{0} A$ is strictly smaller than 1 , that is, $\rho\left(I-X_{0} A\right)<1$.

Problem 4 [Vol 2; 6.1] (10 points). Consider the relation

$$
A \succeq B
$$

between any two $n \times n$ matrices (symmetric or not) iff $A-B$ is symmetric positive semidefinite. Prove that this relation is a partial order.

Problem 5 [Vol 2; 6.3] (5 points). Find the minimum of the function

$$
Q\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(2 x_{1}^{2}+x_{2}^{2}\right)
$$

subject to the constraint $x_{1}-x_{2}=3$.
Problem 6 [Vol 2; 6.4] (10 points). Consider the problem of minimizing the function

$$
f(x)=\frac{1}{2} x^{\boldsymbol{\top}} A x-x^{\boldsymbol{\top}} b
$$

in the case where we add an affine constraint of the form $C^{\top} x=t$, with $t \in \mathbb{R}^{m}$ and $t \neq 0$, and where $C$ is an $n \times m$ matrix of rank $m \leq n$.

Give the details of the reduction of this constrained minimization problem to an unconstrained minimization problem. Hint: see Section 6.2, and the reduction for linear constraints of the form $C^{\boldsymbol{\top}} x=0$.

Problem 7 [Vol 2; 6.5] (10 points). Find the maximum and minimum of the function

$$
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}
$$

on the unit circle $x^{2}+y^{2}=1$.
Problem 8 [Vol 2; 12.1] (10 points). Let $V$ be a Hilbert space. Prove that a subspace $W$ of $V$ is dense in $V$ if and only if there is no nonzero vector orthogonal to $W$.

