Problem Set 9

[Your name] and [student ID]
MAT1850-2020 (Prof. Yun William Yu)

This problem set is based on Vol 2, problem 13.3.
Let A be a real $n \times n$ symmetric positive definite matrix and let $b \in \mathbb{R}^{n}$.
Problem 1 [25pts]. Prove that if we apply the steepest descent method (for the Euclidean norm) to

$$
J(v)=\frac{1}{2}\langle A v, v\rangle-\langle b, v\rangle,
$$

and if we define the norm $\|v\|_{A}$ by

$$
\|v\|_{A}=\langle A v, v\rangle^{1 / 2}
$$

we get the inequality

$$
\left\|u_{k+1}-u\right\|_{A}^{2} \leq\left\|u_{k}-u\right\|_{A}^{2}\left(1-\frac{\left\|A\left(u_{k}-u\right)\right\|_{2}^{4}}{\left\|u_{k}-u\right\|_{A}^{2}\left\|A\left(u_{k}-u\right)\right\|_{A}^{2}}\right) .
$$

Problem 2 [25pts]. Recall that the condition number $\operatorname{cond}_{2}(A)=\lambda_{n} / \lambda_{1}$, where λ_{n} is the largest eigenvalue of A and λ_{1} is the smallest eigenvalue of A.

Consider the case where $n=2$. Prove that

$$
\left\|u_{k+1}-u\right\|_{A} \leq \frac{\operatorname{cond}_{2}(A)-1}{\operatorname{cond}_{2}(A)+1}\left\|u_{k}-u\right\|_{A},
$$

and thus

$$
\left\|u_{k}-u\right\|_{A} \leq\left(\frac{\operatorname{cond}_{2}(A)-1}{\operatorname{cond}_{2}(A)+1}\right)^{k}\left\|u_{0}-u\right\|_{A}
$$

Problem 3 [25pts]. Let's return to the general case of $n \geq 2$. Using a diagonalization of A, where the eigenvalues of A are denoted $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, prove that

$$
\left\|u_{k+1}-u\right\|_{A} \leq \frac{\operatorname{cond}_{2}(A)-1}{\operatorname{cond}_{2}(A)+1}\left\|u_{k}-u\right\|_{A} .
$$

Note that this proof can be rather tricky. Hint: you may find it helpful to normalize something to a unit vector, to consider the convexity of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(\lambda)=\frac{1}{\lambda}$, and to bound something by a linear approximation.

Problem 4 [25pts]. Prove that when $\operatorname{cond}_{2}(A)=1$, then $A=\lambda I$ for some $\lambda \in \mathbb{R}$ and the method converges in one step. Further prove that when the initial starting descent direction $A u_{0}-b$ is an eigenvector of A, the method also converges in one step.

