Review of Fermat's Little Theorem

 Lecture 10a: 2022-03-21MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Fermat's little theorem

- Theorem Statement
- Let p be prime.
- If $a \not \equiv 0(\bmod p)$, then $a^{p-1} \equiv 1(\bmod p)$.
- For any a (including 0$)$, can say $a^{p} \equiv a(\bmod p)$.
- Applications
- Finding large powers

$$
a^{1002}(\bmod 11) \equiv a^{2}(\bmod 11)
$$

because $a^{10} \equiv 1$.

- Finding certain roots

$$
\sqrt[3]{\left.F^{\text {Finding certain roots }}(\bmod l \mid) \equiv \sqrt[3]{a^{11}} \equiv \sqrt[3]{a^{21}} \equiv a^{7}(\bmod 11)\right)}
$$

Finding large powers

- Algorithm for $a^{m}(\bmod p)$.
- Conditions: p is prime and $a \not \equiv 0(\bmod p)$.
- Find $m=x(p-1)+r$ by division with remainder.
- Then $a^{m} \equiv a^{r}(\bmod p)$.

$$
\begin{aligned}
& \text { Ex. } 2^{125}(\bmod 13) \equiv 2^{5}(\bmod 13) \\
& 1 2 \longdiv { 1 2 5 } { } ^ { 5 } \\
& \equiv 2^{4} \cdot 2^{\prime} \quad(\bmod 13) \\
& \equiv 3.2(\bmod 13) \\
& \frac{12}{05} \\
& \equiv 6(\bmod 13) \\
& 2^{\prime} \equiv 2 \\
& 2^{2} \equiv 4 \\
& 2^{4} \equiv 16 \equiv 3 \\
& \equiv 32(\operatorname{mal} 13) \\
& \equiv 6(\operatorname{mot} 13)
\end{aligned}
$$

Finding certain roots

$$
10^{1} \equiv 10^{\prime} \cdot 1 \equiv 10^{1} \cdot 10^{16} \equiv 10^{17}
$$

- Intuition:
- k th roots are easy for anything written as $a^{k m}$, because $\sqrt[k]{a^{k m}}=\left(a^{k m}\right)^{\frac{1}{k}}=a^{m}$.
- We can rewrite $a^{1} \equiv a^{(p-1) l+1}$ for any integer l.

Ex. $\sqrt[5]{10} \bmod 17 . \quad$ Note $10^{16} \equiv 1$ mud 17
So $10^{\prime} \equiv 10^{17} \equiv 10^{33} \equiv 10^{49} \equiv 10^{65} \bmod 17$
Thus $\sqrt[5]{10} \equiv \sqrt[5]{10^{65}} \equiv 10^{65 / 5} \equiv 10^{13} \mathrm{mod} 17$

$$
\begin{aligned}
& 10^{1} \equiv 10 \\
& 10^{2} \equiv 100 \equiv 15 \\
& 10^{4} \equiv 225 \equiv 4 \\
& 10^{8} \equiv 16 \equiv-1
\end{aligned}
$$

$$
=10^{8} \cdot 10^{4} \cdot 10^{1}
$$

$$
\equiv-1 \cdot 4 \cdot 10
$$

$$
\equiv-40 \equiv-40+17 \cdot 2
$$

$=-6=11 \quad(\operatorname{nob} 17)$

Finding certain roots without lists

- Algorithm for $\sqrt[k]{a}(\bmod p)$
- Conditions: p is prime $a \not \equiv 0(\bmod p)$, and $\operatorname{gcd}(k, p-1)=1$.
- Find 1 as a combination of k and $p-1$

$$
\begin{array}{ll}
1=k m-l(p-1) & \quad+l(p-1)=k m
\end{array}
$$

- Then $a^{1} \equiv a^{1+l(p-1)} \equiv a^{k m}$.
- So $\sqrt[k]{a} \equiv \sqrt[k]{a^{k m}} \equiv a^{m}(\bmod p)$

Ex. $\sqrt[5]{10} \bmod 17$

$$
\begin{aligned}
16 & =5 \cdot 3+1 \\
5 & =5 \cdot 1 \\
1 & =16 \cdot 5 \cdot 3 \\
1-16 & =-5 \cdot 3
\end{aligned}
$$

Try out Fermat's Little Theorem

- $3^{1000} \bmod 81$

81 is not prime, so can't use FLT

- $2^{666} \bmod 61$

FLT: $2^{60} \bmod 61 \equiv 1$

$$
2^{666} \equiv 2^{6} \equiv 64 \equiv 3
$$

- $\sqrt[3]{10} \bmod 57$

57 is not prime

- $\sqrt[3]{10} \bmod 61$ $\operatorname{gcd}(3,60)=3$.

$$
3^{3} \equiv 27 \operatorname{cod} 9 \neq 10
$$

- $\sqrt[3]{10} \bmod 11^{10^{10} \equiv 1}$

$$
10^{2} \equiv 100 \equiv 1
$$

A: 2
$10^{4} \equiv 1$
B: 3
$\sqrt[3]{10} \equiv \sqrt[3]{10^{11}} \equiv \sqrt[3]{10^{21}} \equiv 10^{7}$
$10^{7} \equiv 10^{4} \cdot 10^{2} \cdot 10^{1}$
C: 5
$10^{\prime} \equiv 10^{1+50} \equiv 10^{21}$
$\equiv 10$
D: 10
E: Can't use FLT

Think like a mathematician

- Fermat's Little Theorem and the methods related to it only work under certain conditions, but make things a lot easier when they do.

Think like a mathematician

- Questions:
- Why do we need the modulus to be prime?
- Can we sometimes make Fermat's Little Theorem work even when the modulus is not prime?
- Strategies:
- What are some of the ways we've figured out patterns / things to prove?

Answer in chat

- Did a lot of experiments, wrote them into tables, and then looked for patterns.
- Made guesses based on analogies to other similar things (roots are harder because it is reversing something, and we know that subtraction and division are harder).
- Another approach:
- Carefully studying proof steps.

How we came up with FLT
m 17

Conjecture: : $\underbrace{a^{6 n} \equiv 1}$ for any n for any prime p.

Proof idea

- Remember from the bean-bag tossing experiment that for prime modulus p, the multiples of any nonzero number x are all the numbers.

$$
\begin{aligned}
& \text { Flex. in mod } 7, n_{m} \text { lipid of } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Now we write } a \text { in } p-1 \text { different ways:- } \\
& \frac{12}{6} \equiv \frac{5}{6}
\end{aligned}
$$

$$
a \equiv \frac{a}{1} \equiv \frac{2 a}{2} \equiv \frac{3 a}{3} \equiv \cdots \equiv \frac{(p-1) a}{p-1}
$$

Ex. $2 \equiv \frac{2}{1} \equiv \frac{4}{2} \equiv \frac{6}{3} \equiv \cdots \equiv \frac{12}{6} \bmod 7$

- Multiplying them all together gives the proof.

$$
\begin{aligned}
& a^{p-1} \equiv \frac{a}{1} \frac{2 a}{2} \frac{3 a}{3} \cdots \frac{(p-1) a}{p-1} \equiv 1 \\
& \text { all the panzers number } \\
& \text { Exactly once } \\
& 2^{6} \equiv \frac{2 \cdot 4 \cdot 6 \cdot 1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \equiv 1 \text { mod } 7
\end{aligned}
$$

Step 0: list start and end

- Needed: p has to be prime.
i.e if $p=4$, then our proof wont wort
- Needed: $a \not \equiv 0(\bmod p)$
in. if $a=0$ or $a=p$ or $a=2 r$, then our proust won'd wort
- Claim: $\begin{gathered}\frac{a^{p-1}}{\tau_{\text {our dual }}} \equiv \underline{1}(\bmod p) .\end{gathered}$

Step 1: rewriting a^{p-1}
Becerve p is prime, we can dinge by all numbers except 0 .

And $\underbrace{\frac{a}{1} \equiv \frac{\frac{2 a}{2} \equiv \frac{3 a}{3} \equiv \cdots . \equiv \frac{(p-1) a}{p-1}}{a}}_{p-1 \text { ways of writing }}$

Then $a^{p-1} \equiv \underbrace{a \cdot a \cdot a \cdots \cdot a}_{p-1 \text { times }}$

$$
\equiv \frac{a}{1} \cdot \frac{2 a}{2} \cdot \frac{3 a}{3} \cdots \cdot \frac{(p-1) a}{p-1}
$$

Step 2: multiples are all numbers
Been -bag tossing exp
If $\operatorname{gcd}(a, p)=1$, then

$$
\begin{aligned}
& \operatorname{god}(a, p)=1 \text {, then } \\
& \{a, 2 a, 3 a, 4 a, \ldots\} \text { is all number in } \mathrm{m}_{p}
\end{aligned}
$$

became we can write a combo

$$
\begin{aligned}
1 & =k_{a}+l_{p} \\
\Rightarrow 1 & \equiv k_{a}(m o t p) \\
2 & \equiv 2 k a \\
3 & \equiv 3 k_{a} \\
& \vdots \\
p-1 & \equiv(p-1) k_{a} \\
p & \equiv p k_{a}
\end{aligned}
$$

Step 3: multiples go through all nonzero in a cycle before returning to 0
$0, a, 2 a, \ldots .,(p-1) a, p a,(p+1) a, \ldots$ is all multiplies of a.
Furthermore, $p a=0$ mod p

$$
(p+1)_{a} \equiv a \text { mod } p
$$

So the cycle repeats after p step: But, we con get all p number in mud p. So each cycle must content all of then Thus, $\{0, a, 2 a, \ldots,(p-1) a\}=\left\{0,1, \ldots, p^{-1}\right\}$ as sit. $\Rightarrow\left\{a, 2 a, \ldots,(p-1)_{a}\right\}=\{1, \ldots, p-1\}$

Step 4: putting it all together

$$
\begin{aligned}
a^{p-1} & \equiv \frac{a}{1} \cdot \frac{2 a}{2} \cdot \frac{3 a}{3} \cdots \cdot \cdot \frac{(p-1) a}{p-1} \text { from skep! } \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

Examining the proof

- Step 1 depends on prime p in order to divide.
- Maybe we can find other circumstances in which we can divide?
- Step 2 uses $a \not \equiv 0(\bmod p)$ to show that $\operatorname{gcd}(a, p)=$ 1 , which makes the multiples all possible numbers.
- Step 4 then used the number of non-zero numbers in $\bmod \mathrm{p}$, which is $p-1$, as the cycle length $a^{p-1} \equiv 1$.
- Maybe when we are not working in a prime, we can find some other shorter cycle of multiples that still works?
- Next time: we will show Euler's Theorem, which generalizes Fermat's Little Theorem to non-prime modulus.

