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Fermat’s little theorem

* Theorem Statement
* Let p be prime.
* Ifa £ 0 (mod p), then a?~1 = 1 (mod p).

* For any a (including 0), can say a”? = a (mod p).

* Applications
* Finding large powers
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* Finding certain roots
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Finding large powers

* Algorithm for a™ (mod p).
* Conditions: p is prime and a # 0 (mod p).
* Find m = x(P — 1) + r by division with remainder.
* Thena™ = a” (mod p).
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Finding certain roots (15 ~d Bzpo
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* Intuition:
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e kth roots are easy for anything written as a®™, because
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 We can rewrite a = a®~ Y1 for any integer .
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Finding certain roots without lists

* Algorithm for §/a (mod p)
* Conditions: p is prime,a # 0 (mod p), and

ged(k,p — 1) = 1.
* Find 1 as a combinationof kandp — 1
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Try out Fermat’s Little Theorem
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Think like @ mathematician

* Fermat’s Little Theorem and the methods related to
it only work under certain conditions, but make
things a lot easier when they do.
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Think like a mathematician

* Questions:
* Why do we need the modulus to be prime?
e Can we sometimes make Fermat’s Little Theorem work
even when the modulus is not prime?
* Strategies:

* What are some of the ways we’ve figured out patterns /
things to prove?

Answer in chat

* Did a lot of experiments, wrote them into tables, and then
looked for patterns.

* Made guesses based on analogies to other similar things
(roots are harder because it is reversing something, and we
know that subtraction and division are harder).

* Another approach:
* Carefully studying proof steps.



How we came up with FLT
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Proof idea

* Remember from the bean-bag tossing experiment
that for prime modulus p, the multiples of any non-
zero number x are all the numbers.
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Step O: list start and end

* Needed: p has to be prime.
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Step 1: rewriting aP~1
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Step 2: multiples are all numbers
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Step 3: multiples go through all non-
zero in a cycle before returning to O
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Step 4: putting it all together
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Examining the proof

* Step 1 depends on prime p in order to divide.
* Maybe we can find other circumstances in which we can
divide?
* Step 2 uses a # 0 (mod p) to show that gcd(a,p) =
1, which makes the multiples all possible numbers.

* Step 4 then used the number of non-zero numbers in
mod p, which is p — 1, as the cycle length a?~1 = 1.

* Maybe when we are not working in a prime, we can find
some other shorter cycle of multiples that still works?

* Next time: we will show Euler’s Theorem, which
generalizes Fermat’s Little Theorem to non-prime
modulus.



