Review of Fermat's Little Theorem Lecture 10a: 2022-03-21

> MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Fermat's little theorem

- Theorem Statement
 - Let p be prime.
 - If $a \not\equiv 0 \pmod{p}$, then $a^{p-1} \equiv 1 \pmod{p}$.
 - For any a (including 0), can say $a^p \equiv a \pmod{p}$.
- Applications
 - Finding large powers

• Finding certain roots

Finding large powers

- Algorithm for $a^m \pmod{p}$.
 - Conditions: p is prime and $a \not\equiv 0 \pmod{p}$.
 - Find m = x(d 1) + r by division with remainder.
 - Then $a^m \equiv a^r \pmod{p}$.

Finding certain roots

- Intuition:
 - *k*th roots are easy for anything written as a^{km} , because $\sqrt[k]{a^{km}} = (a^{km})^{\frac{1}{k}} = a^{m}$.
 - We can rewrite $a^1 \equiv a^{(p-1)l+1}$ for any integer l.

Finding certain roots without lists

- Algorithm for $\sqrt[k]{a} \pmod{p}$
 - Conditions: p is prime, $a \not\equiv 0 \pmod{p}$, and gcd(k, p-1) = 1.
 - Find 1 as a combination of k and p-1

$$1 = km - l(p - 1)$$

• Then $a^1 \equiv a^{1+l(p-1)} \equiv a^{km}$.

• So
$$\sqrt[k]{a} \equiv \sqrt[k]{a^{km}} \equiv a^m \pmod{p}$$

Try out Fermat's Little Theorem

• 3¹⁰⁰⁰ mod 81

• 2⁶⁶⁶ mod 61

• $\sqrt[3]{10} \mod 57$

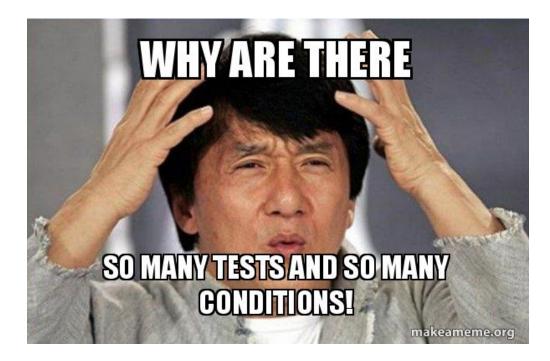
• $\sqrt[3]{10} \mod 61$

• $\sqrt[3]{10} \mod 11$

A: 2 B: 3 C: 5 D: 10 E: Can't use FLT

Think like a mathematician

• Fermat's Little Theorem and the methods related to it only work under certain conditions, but make things a lot easier when they do.



Think like a mathematician

- Questions:
 - Why do we need the modulus to be prime?
 - Can we sometimes make Fermat's Little Theorem work even when the modulus is not prime?
- Strategies:
 - What are some of the ways we've figured out patterns / things to prove?

Answer in chat

- Did a lot of experiments, wrote them into tables, and then looked for patterns.
- Made guesses based on analogies to other similar things (roots are harder because it is reversing something, and we know that subtraction and division are harder).
- Another approach:
 - Carefully studying proof steps.

How we came up with FLT

	<i>a</i> ⁰	<i>a</i> ¹	a^2	<i>a</i> ³	<i>a</i> ⁴	a ⁵	a ⁶	<i>a</i> ⁷	<i>a</i> ⁸	a ⁹	<i>a</i> ¹⁰	a ¹¹	a ¹²
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	1	2	4	1	2	4	1	2	4	1
3	1	3	2	6	4	5	1	3	2	6	4	5	1
4	1	4	2	1	4	2	1	4	2	1	4	2	1
5	1	5	4	6	2	3	1	5	4	6	2	3	1
6	1	6	1	6	1	6	1	6	1	6	1	6	1

Proof idea

Remember from the bean-bag tossing experiment that for prime modulus *p*, the multiples of any non-zero number *x* are all the numbers.
 in and in the numbers.

• Now we write a in p - 1 different ways: a - a - 2a - 3a - (p-1)a

2, 4, 6. 8. 10, 12, 14

$$u = \frac{1}{1} = \frac{1}{2} = \frac{1}{3} = \dots = \frac{1}{p-1}.$$

$$u = \frac{1}{1} = \frac{1}{2} = \frac{1}{3} = \frac{1}{2} = \frac{1}{2}$$

$$u = \frac{1}{2} = \frac{1}{3} = \frac{1}{2} = \frac{1}{3} = \frac{1}{2}$$

$$u = \frac{1}{2}$$

$$u = \frac{1}{2} = \frac{1}{3} = \frac{1}{2} = \frac{1}{3} = \frac{1}{2}$$

$$u = \frac{1}{2}$$

 $a^{p-1} \equiv \frac{a}{1} \frac{2a}{2} \frac{3a}{3} \cdots \frac{(p-1)a}{p-1} \stackrel{\text{all the number number exactly name of the number of the nu$

Step 0: list start and end

• Needed: p has to be prime.

• Needed: $a \not\equiv 0 \pmod{p}$

• Claim: $a^{p-1} \equiv 1 \pmod{p}$

Step 1: rewriting a^{p-1}

Step 2: multiples are all numbers

Step 3: multiples go through all nonzero in a cycle before returning to 0

Step 4: putting it all together

Examining the proof

- Step 1 depends on prime p in order to divide.
 - Maybe we can find other circumstances in which we can divide?
- Step 2 uses $a \not\equiv 0 \pmod{p}$ to show that gcd(a, p) = 1, which makes the multiples all possible numbers.
- Step 4 then used the number of non-zero numbers in mod p, which is p 1, as the cycle length $a^{p-1} \equiv 1$.
 - Maybe when we are not working in a prime, we can find some other shorter cycle of multiples that still works?

 Next time: we will show Euler's Theorem, which generalizes Fermat's Little Theorem to non-prime modulus.