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Adapting Fermat’s Little Theorem

* Fermat’s Little Theorem:
For prime p, if a # 0 (mod p), then
aP~! =1 (mod p)

* Why? Because the multiples of a are all the numbers
in mod p.

* This is also true if gcd(a,n) = 1: then multiples of a
mod n are also all the numbers in mod n.



Adapting the proof

* What goes wrong with this attempted proof?



Problems with division

* If gcd(a,n) = 1, then the multiples of a are all
numbers in mod n arithmetic.

* Also, if gcd(a,n) = 1, then the reciprocal % exists

and is unique in mod n arithmetic, so we can always
divide by a.

* But, we tried dividing by all non-zero numbers in the
previous proof.

* What numbers can we divide by in mod n?

Answer in chat



Using relative primes



Multiplying relative primes

* Claim: if gcd(a,n) = 1, and gcd(b,n) = 1, then
gcd(ab,n) = 1.



More multiplying relative primes

* Claim: Let gcd(a,n) = 1, gcd(b,n) = 1, and
gcd(c,n) = 1. Thenif ab = ac (mod n), then b =
¢ (mod n).

* This means that each time we multiply by a different
relative prime in mod n, we don’t get the same thing.



Recall

* Which of the following methods tells you how many
numbers smaller than n are relatively prime to n?

A: The Euclidean Algorithm

B: Using the prime factorization n = 2923%935%57%7711%1 ... gand
then multiplying together to get the product a,azasa-,a ;1 --

C: Using the prime factorization n = 2423%3545749711%1 ... gnd
then multiplying together to get the product
(az + D(az +1)(as + D(a; + (a;; +1) -

D: Using the prime factorization of n, and for all the primes
p1, -, Px that appear in the prime factorization, compute

D

E: None of the above



Euler’s Theorem

* Fermat’s Little Theorem:
For prime p, if a # 0 (mod p), then
aP~! =1 (mod p)

e Euler’s Theorem:
For any number n, if gcd(a,n) = 1, then
a®?™ =1 (modn)
where ¢(n) is Euler’s totient function counting the
number of relative primes smaller than n.
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Proof of Euler’s Theorem

* Euler’s Theorem:
For any number n, if gcd(a,n) = 1, then
a®™ =1 (mod n)



Application

*111% =1 (mod 60)



Application

e Compute 27> (mod 57)



Try It out

 Compute 3%* (mod 55)

A:0
B: 6
C: 25
D: 26
E: None of the above



Try It out

e Compute 6°° (mod 27)

A:0
B: 6
C: 25
D: 26
E: None of the above



