Euler's Theorem Lecture 10c: 2022-03-23

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Adapting Fermat's Little Theorem

• Fermat's Little Theorem: For prime p, if $a \not\equiv 0 \pmod{p}$, then $a^{p-1} \equiv 1 \pmod{p}$

• Why? Because the multiples of a are all the numbers in mod p.

• This is also true if gcd(a, n) = 1: then multiples of a mod n are also all the numbers in mod n.

Adapting the proof

What goes wrong with this attempted proof?

Problems with division

- If gcd(a, n) = 1, then the multiples of a are all numbers in mod n arithmetic.
- Also, if gcd(a, n) = 1, then the reciprocal $\frac{1}{a}$ exists and is unique in mod n arithmetic, so we can always divide by a.
- But, we tried dividing by all non-zero numbers in the previous proof.
- What numbers can we divide by in mod n?

Answer in chat

Using relative primes

Multiplying relative primes

• Claim: if gcd(a, n) = 1, and gcd(b, n) = 1, then gcd(ab, n) = 1.

More multiplying relative primes

• Claim: Let $\gcd(a,n)=1$, $\gcd(b,n)=1$, and $\gcd(c,n)=1$. Then if $ab\equiv ac\pmod n$, then $b\equiv c\pmod n$.

• This means that each time we multiply by a different relative prime in mod n, we don't get the same thing.

Recall

• Which of the following methods tells you how many numbers smaller than n are relatively prime to n?

A: The Euclidean Algorithm

B: Using the prime factorization $n=2^{a_2}3^{a_3}5^{a_5}7^{a_7}11^{a_{11}}\cdots$ and then multiplying together to get the product $a_2a_3a_5a_7a_{11}\cdots$

C: Using the prime factorization $n=2^{a_2}3^{a_3}5^{a_5}7^{a_7}11^{a_{11}}\cdots$ and then multiplying together to get the product

$$(a_2 + 1)(a_3 + 1)(a_5 + 1)(a_7 + 1)(a_{11} + 1) \cdots$$

D: Using the prime factorization of n, and for all the primes p_1, \dots, p_k that appear in the prime factorization, compute

$$n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_k}\right)$$

E: None of the above

Euler's Theorem

• Fermat's Little Theorem: For prime p, if $a \not\equiv 0 \pmod{p}$, then $a^{p-1} \equiv 1 \pmod{p}$

• Euler's Theorem:

For any number n, if $\gcd(a,n)=1$, then $a^{\phi(n)}\equiv 1\ (\mathrm{mod}\ n)$

where $\phi(n)$ is Euler's totient function counting the number of relative primes smaller than n.

Powers mod 8										
	a^1	a^2	a^3	a^4	a^5	a ⁶	a^7	<i>a</i> ⁸		
1	1	1	1	1	1	1	1	1		
3	3	1	3	1	3	1	3	1		
5	5	1	5	1	5	1	5	1		
7	7	1	7	1	7	1	7	1		

Powers mod 10										
	a^1	a^2	a^3	a^4	a^5	a^6	a^7	a ⁸		
1	1	1	1	1	1	1	1	1		
3	3	9	7	1	3	9	7	1		
7	7	9	3	1	7	9	3	1		
9	9	1	9	1	9	1	9	1		

	Powers mod 14										
	a^1	a^2	a^3	a^4	a^5	a^6	a^7	a ⁸			
1	1	1	1	1	1	1	1	1			
3	3	9	13	11	5	1	3	9			
5	5	11	13	9	3	1	5	11			
9	9	11	1	9	11	1	9	11			
11	11	9	1	11	9	1	11	9			
13	13	1	13	1	13	1	13	1			

Powers mod 15										
	a ¹	a^2	a^3	a^4	a^5	a ⁶	a^7	a ⁸		
1	1	1	1	1	1	1	1	1		
2	2	4	8	1	2	4	8	1		
4	4	1	4	1	4	1	4	1		
7	7	4	13	1	7	4	13	1		
8	8	4	2	1	8	4	2	1		
11	11	1	11	1	11	1	11	1		
13	13	4	7	1	13	4	7	1		
14	14	1	14	1	14	1	14	1		

Powers mod 18										
	a^1	a^2	a^3	a^4	a^5	a^6	a^7	<i>a</i> ⁸		
1	1	1	1	1	1	1	1	1		
5	5	7	17	13	11	1	5	7		
7	7	13	1	7	13	1	7	13		
11	11	13	17	7	5	1	11	13		
13	13	7	1	13	7	1	13	7		
17	17	1	17	1	17	1	17	1		

Proof of Euler's Theorem

• Euler's Theorem: For any number n, if $\gcd(a,n)=1$, then $a^{\phi(n)}\equiv 1\ (\mathrm{mod}\ n)$

Application

• $11^{16} \equiv 1 \pmod{60}$

Application

• Compute 2⁷⁵ (mod 57)

Try it out

• Compute 3⁸⁴ (mod 55)

A: 0

B: 6

C: 25

D: 26

E: None of the above

Try it out

• Compute 6⁵⁵ (mod 27)

A: 0

B: 6

C: 25

D: 26

E: None of the above