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What’s a prime number

* A prime number p is any natural number greater
than 1 than is divisible by only 1 and itself.
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* Prime factors form the multiplicative building blocks
of the natural numbers.

3

924 = 2 -3
N
¢ b

\ /

,L/LZ. 3



How to find a large prime

* Suppose | want a prime number that’s between
10219 and 10%**. How can | find one?
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Sieve of Eratosthenes

* Method for computing list
of primes by filtering out
all multiples of a number.

* Repeatedly filter out all
multiples of the smallest
remaining number in a
list.

e Start with filter out
multiples of 2.

* Then multiples of 3.

* Then multiples of 5,
because 4 is filtered, etc.

Eratosthenes of Cyrene
276 BCE — 194 BCE



Sieve of Eratosthenes in action
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* How quickly do we get all the primes between 1 and
1007



How fast is the sieve?

* If n is not prime, then it must be divisible by a prime
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* To figure out if a number n is prime, you only have to
run the Sieve of Eratosthenes up to a prime p < +/n.
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s the following number prime?

. 12839418249182498%2769276456941784834 7
Yy J N}
X

J
xg/o

 How long would it take to determine if it’s prime
using the Sieve of Eratosthenes if it takes one second

to remove multiples of each prime? Choose the best

approximation.
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Prime Number Theorem

* [Hadamard, 1895, Poussin, 1896]
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* There are approximately — prime numbers

between2andn.
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* So in the sieve on the previous slide, we can check

fewer numbers, sqilnce we only check primes.
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Chances of guessing a prime

* 128394182491824983485276927645694578483457
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* What if we just said that this was a prime. What's the
chance we are right?

e Recall the Prime Number Theorem says that approximately
n

— numbers are prime from 1 to n.
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Fermat Primality Test

* Fermat’s Little Theorem: If n is a prime number, and

a is any number between 1 and n — 1, then

a1 =1 (modn)
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* Conversely: If a is any number between 1 andn — 1,
and
a®1#1 (modn)
then n is not prime.
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Fermat Liars and Witnesses

eIfa®™ 1% 1 (modn),then aisa witness to the fact
that n is not prime, because it tells us that n is not

rime.
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*Ifa™ 1 =1 (modn), butnis not prime, then a is a

Fermat liar, since it looks like n is prime, but it isn’t.
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Example

e Claim: 129 is not prime.

e Witness: let a = 2.
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Try It out

* Which of the following numbers is a witness to the
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Fermat Primality Test

* We want to know if n is prime.

n=33
2 PR
1. Pick a random number a between #andn — &
Qa o (D a - 3’
2. Compute a™ ! (mod n) 12
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3. Ifa™ 1 £ 1 (modn),then nis not prime and a is
a witness to this fact. Otherwise, n passes the test,
and you don’t know for certain.
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* If you repeat this process enough times, and it passes
the test each time, then maybe it’s prime, but you
can’t prove it for sure.



Going back
na
* 128394182491824983485276927645694578483457

* Claim a = 2 is a withess because we can compute
2128394182491824983485276927645694578483456 & -/

in mod 128394182491824983485276927645694578483457

arithmetic. Sn

* Using a computer, we get an answer of
17311083661514653306099617922582289657728,
which is not equal to 1.

* Therefore, the original number was not prime.



Fermat’s test and finding large primes

* Fermat’s test strictly speaking only tells you when a
number is not prime.

* However, except for a very special class of exceptions
(called Carmichael numbers), each time a number
passes the test with a different number a, you
decrease the chance of being composite by 50% each
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Miller-Rabin and other tests

* Except for a certain class of hard numbers, Fermat’s
test tells us that a number is probably prime.

e Other modifications guarantee it, and don’t have any
hard numbers. The Miller-Rabin test (see Section
23.9) always works to show that a number is
probably prime.

* This lets us just guess a bunch of large numbers, and
quickly filter out the non-primes, to get a large prime
number.

* These large prime numbers are essential in
cryptography.



