Α	В	С	D	E	F	G	H	I	J	К	L	Μ
1	2	3	4	5	6	7	8	9	10	11	12	13

N	0	Ρ	Q	R	S	т	U	v	w	х	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Caesar cipher:

- 1. Choose a key between 1 and 25.
- 2. Add this number to the decimal-encoded letters of the message in mod 26.
- 3. Convert the decimal-encoded letters back to letters.
- 4. To decrypt, reverse by subtracting instead of adding the key.

Vigenère cipher:

- 1. Choose a 4-6 letter word as a key
- 2. Add this word to the message in mod 26 under a decimalencoding of the letters. If the word is shorter than the message, repeat the word over and over again.
- 3. Convert the decimal-encoded summed message back to letters.
- 4. To decrypt, reverse by subtracting instead of adding the key.

RSA algorithm:

- 1. Alice says hello to Bob.
- 2. Bob choose two large prime numbers *p*, *q* (for this exercise, choose 2-digit prime numbers)
- 3. Bob chooses an exponent k
- 4. Bob sends (n, k) to Alice as a public key.
- 5. Alice has a message m, and she sends $b \equiv a^k \pmod{n}$ to Bob.
- 6. Bob decrypts the message by computing $a \equiv \sqrt[k]{b} \pmod{n}$, because he knows $\phi(n) = (p-1)(q-1)$