Encryption and codes Lecture 11b: 2022-03-30

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

A Communications Story

A

(A)lice from Alice's Adventures in Wonderland Illustration by Arthur Rackham, 1907

(B)ank of Montreal
https://commons.wikimedia.org/wiki/File:Bank_of_Montreal_Head_ Office,_Montr\%C3\%A9al,_Southeast_view_20170410_1.jpg

Eaves fropper
(E)ve by Lucas Cranach the Elder (1528)

Encoding letters as decimal numbers

- Simple encoding is to just look at position in alphabet

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}
1	2	3	4	5	6	7	8	9	10	11	12	13

\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
14	15	16	17	18	19	20	21	22	23	24	25	26

- Computers use more complicated ASCII

0	NUL	16	DLE	32	SPACE	48	0	64	@	80	P	96	,	112	p
1	SOH	17	DC1	33	!	49	1	65	A	81	Q	97	a	113	q
2	STX	18	DC2	34	"	50	2	66	B	82	R	98	b	114	r
3	ETX	19	DC3	35	\#	51	3	67	C	83	S	99	c	115	s
4	EOT	20	DC4	36	\$	52	4	68	D	84	T	100	d	116	t
5	ENQ	21	NAK	37	\%	53	5	69	E	85	U	101	e	117	u
6	ACK	22	SYN	38	\&	54	6	70	F	86	V	102	f	118	v
7	BEL	23	ETB	39	'	55	7	71	G	87	W	103	g	119	w
8	BS	24	CAN	40	1	56	8	72	H	88	X	104	h	120	x
9	TAB	25	EM	41)	57	9	73	I	89	Y	105	i	121	y
10	LF	26	SUB	42	*	58	:	74	J	90	Z	106	j	122	z
11	VT	27	ESC	43	+	59	;	75	K	91	[107	k	123	\{
12	FF	28	FS	44	,	60	<	76	L	92	1	108	I	124	1
13	CR	29	GS	45	-	61	=	77	M	93]	109	m	125	\}
14	SO	30	RS	46		62	>	78	N	94	\wedge	110	n	126	~
15	SI	31	US	47	/	63	?	79	0	95	-	111	0	127	DEL

Try it out

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}
1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
14	15	16	17	18	19	20	21	22	23	24	25	26

- Match each of the following phrases:
- 251521185112911815145

YOUREALIARONE
-142113212920201252217 NUMBLITTLEBUG

- 14522518715141417922 NEUERGO NNAGIV

Caesar Cipher - mod 26 addition

- One simple cipher is to add in mod 26 arithmetic, or equivalently, shift all letters by the same amount.
Fo.

$$
\begin{array}{lll}
A \rightarrow D & 1 \rightarrow 1+3 \equiv 4 & \bmod 26 \\
B \rightarrow E & 2 \rightarrow 2+3 \equiv 5 & \bmod 26 \\
\vdots & & \\
Y \rightarrow B & 25 \rightarrow 25+3 \equiv 28 \equiv 2 \bmod 26 \\
Z \rightarrow C & 26 \equiv 0 \rightarrow 0+3 \equiv 3 \bmod 26
\end{array}
$$

Gains Julius Cesar
Caesar shift 3
\uparrow
key

Try it out 91132085 $\lambda 19,11,23,36=4,18,15$

- Encrypt: "I AM THE VERY MODEL OF A MODERN MAJOR GENERAL" using Caesar cipher with shift 10.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}
1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
14	15	16	17	18	19	20	21	22	23	24	25	26

Decrypting simple Caesar shift

-How would we decrypt? SDGKCDROLOCDYPDSWOCSDGKCDROGYBCDYPDSWOC

- Could brute force all possibilities.
- Or can make use of common letters (RSTLNE).

Code-breaking using frequencies

 t st e est t es T St e st T es - SDGKCDROLOCDYPDSWOCSDGKCDROGYBCDYPDSWOC-D:8\} 2 comman lerteso 0.14

- C: 6$\}$ next to eath other
- $0: 5 \leftarrow$ Bohnth commen
- S: 4
letter
- G: 3
- $Y: 3$
- K: 2
- R: 2
- P: 2
- W: 2
- L: 1
- B: 1
$C, D=3,4\}$ separaton ebort $11-12$
$0=15 \quad$ Guess $O \rightarrow E, C, D, \rightarrow 5, T$
shift $10 / 16$
- ITWASTHEBESTOFTIMESITWASTHEWORSTOFTIMES

In-class exercise
>100 characters

- Break up into clusters of 10 students.
- Split each cluster into two groups of about 5 people.
- Each group will write two messages encrypted with Caesar ciphers using different shifts.
- They will give the other group both encrypted messages, but only tell them the key to one of them.
- The goal is to then decrypt both messages.
- Whichever group decrypts both messages first gets a mango gummy prize?

Exercise modelling communication

- When you are sending a message, you are playing the role of Alice.
- When you are decrypting a message with a key, you are Bob.
- When you are decrypting a message without a key, you are Eve.

Vigenère Cipher

- The weakness of the Caesar cipher is twofold:
- There are only 26 possible keys.
- You can do a frequency analysis on letters.
- Another cipher invented in the 1500 s by Blaise de Vigenère fixes both these problems and uses a longer key.
- Instead of using a single shift letter as a key we use an entire phrase, like "MAGIC", repeat that phrase, and then add it using modular arithmetic to the message.

Vigenère Example

- TOBEORNOTTOBETHATISTHEQUESTION
- MAGICMAGICMAGICMAGICMAGICMAGIC

Encoded message:

$\begin{array}{lllllllllllllllllllllllllllllllllllllll}20 & 15 & 02 & 05 & 15 & 18 & 14 & 15 & 20 & 20 & 15 & 02 & 05 & 20 & 08 & 01 & 20 & 09 & 19 & 20 & 08 & 05 & 17 & 21 & 05 & 19 & 20 & 09 & 15 & 14\end{array}$
Repeated key:

Summed mod 26:

- GPINREOVCWBCLCKNUPBWUFXDHFUPXQ

> frequencies no longer match English

decryption is just subtract

In-class exercise

- Break up into clusters of 10 students.
- Split each cluster into two groups of about 5 people.
- Each group will write two messages encrypted with Vigenère ciphers using different keys.
- They will give the other group both encrypted messages, but only tell them the key to one of them.
- The goal is to then decrypt both messages.
- Whichever group decrypts both messages first gets a mango gummy prize?

Safely communicating secrets

- If Alice and Bob have a shared secret key, they can communicate reasonably securely. Sometimes, Eve can crack the code, but modern codes are thought to be extremely hard to crack.
- But that relies on having a way to communicate the secret key to begin with.

https://ndla.no/subject:1:b40855bb-9e21-4944-9257c96679da549a/topic:2:108941/resource:1:109074
- Is it possible to securely communicate when Eve can intercept any keys you might send?

