Public-Key Cryptography Lecture 12a: 2022-04-04

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

A Communications Story

(A)lice from Alice's Adventures in Wonderland Illustration by Arthur Rackham, 1907 Sponge(B)ob Squarepants https://freesvg.org/sponge-bob-squarepant

(E)ve by Lucas Cranach the Elder (1528)

Symmetric ciphers

- Caesar shift: add a number to every letter mod 26.
 - The number you add is the "key".
 - If you know the key, you can both encrypt and decrypt.

- Vigenère cipher: add a cyclically repeating word to the message mod 26.
 - The word you add is the "key".
 - If you know the key, you can both encrypt and decrypt.

Symmetric ciphers and eavesdropping

- Symmetric ciphers use the same key for encryption and decryption.
- They only work when Eve only hears part of the conversation.
- If Eve ever hears the key, then she can decrypt the entire conversation, both past and present.

Johann Georg Meyer von Bremen (Germany, 1813 - 1886)

Beating a perfect eavesdropper

- What if Eve knows everything Alice and Bob have ever said to each other, so there's no way for them to share a secret key without Eve knowing?
- In fact, let's say that Alice and Bob have never even met, but are just communicating on the Internet.

Asymmetric encryption

 What if encryption and decryption use different keys? Or if encryption doesn't need a secret at all?

Symmetric encryption

Asymmetric encryption

• Then, Bob could give everyone the encryption key, but not tell anyone the decryption key.

https://www.pbslearningmedia.org/resource/42439c47-de30-487c-9c10-563367a2c843/math-magic/

Reversing is hard: factoring

 We define addition, multiplication, exponentiation, etc, and those are easy.

https://www.flickr.com/photos/nenadstojkovic/50446472706/in/photostream/

 Subtraction, division, and roots, are reversing those operations and sometimes much harder.

Floris de Wit; https://dribbble.com/shots/5039546-Moonwalk

Factoring large numbers

- Figuring out if a number is prime is "easy" using probabilistic primality testing (e.g. Fermat)
 - We want to know if *n* is prime.
 - 1. Pick a random number a between 1 and n 1
 - 2. Compute $a^{n-1} \pmod{n}$
 - 3. If $a^{n-1} \not\equiv 1 \pmod{n}$, then *n* is not prime and *a* is a witness to this fact. Otherwise, *n* passes the test, and you don't know for certain, but you can repeat.

 Factoring a composite number is "hard" for large numbers if you don't know any divisors.

Finding roots with Euler's Theorem

- Algorithm for $\sqrt[k]{a} \pmod{n}$ using Euler's Theorem
 - Conditions: gcd(a, n) = 1 and $gcd(k, \phi(n)) = 1$.
 - Find 1 as a combination of k and $\phi(n)$ $1 = km - l\phi(n)$

• Then
$$a^1 \equiv a^{1+l\phi(n)} \equiv a^{km}$$
.

• So
$$\sqrt[k]{a} \equiv \sqrt[k]{a^{km}} \equiv a^m \pmod{n}$$

Reversing is hard: roots

• Computing $a^k \pmod{n}$ is needs a, k, n.

• Computing $\sqrt[k]{a} \pmod{n}$ is needs $a, k, n, \phi(n)$.

RSA (Rivest-Shamir-Adleman, 1977)

- First public-key cryptosystem, which allows two parties who have never communicated before to send messages securely to each other.
- Made internet shopping and banking possible, because you can communicate securely with other computers without worrying about eavesdroppers.

Ron Rivest

Adi Shamir

Leonard Adleman

RSA algorithm

- 1. Alice introduces herself to Bob.
- 2. Bob generates a two large random primes, p, q and computes the product n = pq
- 3. Bob chooses an exponent k with $gcd(k, \phi(n)) = 1$.
- Bob sends (n, k) to Alice as a public key. Anyone who knows the public key can send messages to Bob that only he can decrypt.
- 5. Alice has a message a, with gcd(a,n) = 1, so she sends $b \equiv a^k \pmod{n}$ to Bob
- 6. Bob can decrypt $a \equiv \sqrt[k]{b} \pmod{n}$

Example

- 1. Alice introduces herself to Bob.
- 2. Bob generates a two large random primes, p, q and computes the product n = pq
- 3. Bob chooses an exponent k with $gcd(k, \phi(n)) = 1$.
- Bob sends (n, k) to Alice as a public key. Anyone who knows the public key can send messages to Bob that only he can decrypt.
- 5. Alice has a message a, with gcd(a,n) = 1, so she sends $b \equiv a^k \pmod{n}$ to Bob
- 6. Bob can decrypt $a \equiv \sqrt[k]{b} \pmod{n}$

Example

- Alice wants to send the message "196" to Bob, but don't want eavesdroppers knowing.
- Bob generates two prime numbers, 19 and 23, which he keeps as his secret key.
- He also chooses 61 as his exponent. Then he publishes (437, 61) as his public key.
- Alice sends $196^{61} \pmod{437} \equiv 9$ to Bob.
- Bob can then decrypt the message because he knows the factorization of $437 = 19 \cdot 23$, so he can compute $\phi(437) = 19 \cdot 23 \cdot \frac{18}{19} \cdot \frac{22}{23} = 18 \cdot 22 = 396$
- Eve cannot decrypt the message unless she is able to factor 437.

Decryption in detail

- Eve intercepts an encrypted message "9" sent to a public key (437, 61).
- Being really clever, Eve breaks the private key and figure out that $437 = 19 \times 23$.
- What was the original unencrypted message?

Try it out: encryption

• Encrypt the message 9 using the RSA public key (n, k) = (77, 13), without factoring 77.

A: 12 B: 23 C: 58 D: 70 E: None of the above

Try it out: decryption

- Decrypt a message encrypted using the RSA public key (n, k) = (77, 13), with secret key $77 = 7 \cdot 11$.
- The encrypted message is 26.
- Helpful hint: $1 = 60 \cdot 5 23 \cdot 13$

A: 5
B: 12
C: 34
D: 67
E: None of the above

Hybrid cryptosystems

- Public-private key encryption is often a lot harder than symmetric key encryption.
- This is true even for computers, which can do both, but are much slower at public-key encryption.
- Thus, in practice, Alice and Bob only use RSA to send a very short message containing a key for symmetric encryption.

