Public-Key Cryptography Lecture 12a: 2022-04-04

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

A Communications Story

Sponge(B)ob Squarepants
https://freesvg.org/sponge-bob-squarepant

(E)ve by Lucas Cranach the Elder (1528)

Symmetric ciphers

- Caesar shift: add a number to every letter mod 26.
- The number you add is the "key".
- If you know the key, you can both encrypt and decrypt.
- Vigenère cipher: add a cyclically repeating word to the message mod 26.
- The word you add is the "key".
- If you know the key, you can both encrypt and decrypt.

Symmetric ciphers and eavesdropping

- Symmetric ciphers use the same key for encryption and decryption.
- They only work when Eve only hears part of the conversation.
- If Eve ever hears the key, then she can decrypt the entire conversation, both past and present.

Johann Georg Meyer von Bremen
(Germany, 1813-1886)

Beating a perfect eavesdropper

- What if Eve knows everything Alice and Bob have ever said to each other, so there's no way for them to share a secret key without Eve knowing?
- In fact, let's say that Alice and Bob have never even met, but are just communicating on the Internet.

Asymmetric encryption

- What if encryption and decryption use different keys? Or if encryption doesn't need a secret at all?

Symmetric encryption

Asymmetric encryption

- Then, Bob could give everyone the encryption key, but not tell anyone the decryption key.

https://www.pbslearningmedia.org/resource/42439c47-de30-487c-9c10-563367a2c843/math-magic/

Reversing is hard: factoring

- We define addition, multiplication, exponentiation, etc, and those are easy.

https://www.flickr.com/photos/nenadstojkovic/50446472706/in/photostream/

Floris de Wit; https://dribbble.com/shots/5039546-Moonwalk

Factoring large numbers

- Figuring out if a number is prime is "easy" using probabilistic primality testing (e.g. Fermat)
- We want to know if n is prime.

1. Pick a random number a between 1 and $n-1$
2. Compute $a^{n-1}(\bmod n)$
3. If $a^{n-1} \not \equiv 1(\bmod n)$, then n is not prime and a is a witness to this fact. Otherwise, n passes the test, and you don't know for certain, but you can repeat.

- Factoring a composite number is "hard" for large numbers if you don't know any divisors.

Finding roots with Euler's Theorem

- Algorithm for $\sqrt[k]{a}(\bmod n)$ using Euler's Theorem - Conditions: $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(k, \phi(n))=1$.
- Find 1 as a combination of k and $\phi(n)$

$$
1=k m-l \phi(n)
$$

- Then $a^{1} \equiv a^{1+l \phi(n)} \equiv a^{k m}$.
- So $\sqrt[k]{a} \equiv \sqrt[k]{a^{k m}} \equiv a^{m}(\bmod n)$

Reversing is hard: roots

- Computing $a^{k}(\bmod n)$ is needs a, k, n.
- Computing $\sqrt[k]{a}(\bmod n)$ is needs $a, k, n, \phi(n)$.

RSA (Rivest-Shamir-Adleman, 1977)

- First public-key cryptosystem, which allows two parties who have never communicated before to send messages securely to each other.

Ron Rivest

- Made internet shopping and banking possible, because you can communicate securely with other computers without worrying about eavesdroppers.

RSA algorithm

1. Alice introduces herself to Bob.
2. Bob generates a two large random primes, p, q and computes the product $n=p q$
3. Bob chooses an exponent k with $\operatorname{gcd}(k, \phi(n))=1$.

HE10THES:

4. Bob sends (n, k) to Alice as a public key. Anyone who knows the public key can send messages to Bob that only he can decrypt.
5. Alice has a message a, with $\operatorname{gcd}(a, n)=1$, so she sends $b \equiv a^{k}(\bmod n)$ to Bob
6. Bob can decrypt $a \equiv \sqrt[k]{b}(\bmod n)$

Example

1. Alice introduces herself to Bob.
2. Bob generates a two large random primes, p, q and computes the product $n=p q$
3. Bob chooses an exponent k with $\operatorname{gcd}(k, \phi(n))=1$.
4. Bob sends (n, k) to Alice as a public key. Anyone who knows the public key can send messages to Bob that only he can decrypt.
5. Alice has a message a, with $\operatorname{gcd}(a, n)=1$, so she sends $b \equiv a^{k}(\bmod n)$ to Bob
6. Bob can decrypt $a \equiv \sqrt[k]{b}(\bmod n)$

Example

- Alice wants to send the message "196" to Bob, but don't want eavesdroppers knowing.
- Bob generates two prime numbers, 19 and 23, which he keeps as his secret key.
- He also chooses 61 as his exponent. Then he publishes $(437,61)$ as his public key.
- Alice sends $196^{61}(\bmod 437) \equiv 9$ to Bob.
- Bob can then decrypt the message because he knows the factorization of $437=19 \cdot 23$, so he can
compute $\phi(437)=19 \cdot 23 \cdot \frac{18}{19} \cdot \frac{22}{23}=18 \cdot 22=396$
- Eve cannot decrypt the message unless she is able to factor 437.

Decryption in detail

- Eve intercepts an encrypted message " 9 " sent to a public key $(437,61)$.
- Being really clever, Eve breaks the private key and figure out that $437=19 \times 23$.
- What was the original unencrypted message?

Try it out: encryption

- Encrypt the message 9 using the RSA public key $(n, k)=(77,13)$, without factoring 77.
A: 12
B: 23
C: 58
D: 70
E: None of the above

Try it out: decryption

- Decrypt a message encrypted using the RSA public key $(n, k)=(77,13)$, with secret key $77=7 \cdot 11$.
- The encrypted message is 26 .
- Helpful hint: $1=60 \cdot 5-23 \cdot 13$

B: 12
C: 34
D: 67
E: None of the above

Hybrid cryptosystems

- Public-private key encryption is often a lot harder than symmetric key encryption.
- This is true even for computers, which can do both, but are much slower at public-key encryption.
- Thus, in practice, Alice and Bob only use RSA to send a very short message containing a key for symmetric encryption.

