MATA02 - Winter 2022 - Lecture 12b Handout - Prof. Yun William Yu Exercise instructions (groups of 3-5 people), example in sub bullets:

- Generate an RSA modulus n using 2-digit primes.
- $p=29, q=31$, so $n=899$.
- Choose an exponent k such that $\operatorname{gcd}(k, \phi(n))=1$.
$\circ \phi(899)=28 * 30=840$. Choose $k=11$.
- Choose a Caesar cipher key $a>1$. Make sure $\operatorname{gcd}(a, n)=1$.
- Let $a=5$.
- Encrypt the Caesar cipher key to get $b \equiv a^{k}(\bmod n)$

○ $b \equiv 5^{11} \equiv 738(\bmod n)$

- Write a short message of about 15-30 characters.
- ILOVEMATHEMATICS
- Convert it to decimal-letter encoding:
- Msg = 912152251312085131209319
- Encrypt the message using the Caesar cipher:
- Encrypted msg: 1417201101862513101862514824
o In letters: NQTAJRFYMJRFYNHX
- Send a message to the other groups: (n, k, b) and encrypted msg
- $(899,11,738)$, NQTAJRFYMJRFYNHX

Then, after everyone's sent out messages via chat, everyone is going to decrypt the other groups' messages.

- Decrypt RSA by computing $a \equiv \sqrt[k]{b}(\bmod n)$.
- $\sqrt[11]{738}(\bmod 899) \equiv 5$.
- Then use the Caesar cipher key to decrypt the message
- NQTAJRFYMJRFYNHX - 5 = ILOVEMATHEMATICS

List of primes: $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59$, $61,67,71,73,79,83,89,97$

A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
14	15	16	17	18	19	20	21	22	23	24	25	26

Caesar cipher:

1. Choose a key between 1 and 25.
2. Add this number to the decimal-encoded letters of the message in mod 26.
3. Convert the decimal-encoded letters back to letters.
4. To decrypt, reverse by subtracting instead of adding the key.

RSA algorithm:

1. Alice says hello to Bob.
2. Bob chooses two large prime numbers p, q and computes $n=p q$.
3. Bob chooses an exponent k, such that $\operatorname{gcd}(k, \phi(n))=1$.
4. Bob sends (n, k) to Alice as a public key.
5. Alice has a message a, where $\operatorname{gcd}(a, n)=1$.

She sends $b \equiv a^{k}(\bmod n)$ to Bob.
6. Bob decrypts the message by computing $a \equiv \sqrt[k]{b}(\bmod n)$.

Hybrid cryptosystem:

1. Use RSA to send a key for a Caesar cipher.
2. Then once both parties know the key, send later messages using the Caesar cipher with that key instead.
