Hybrid crypto interactive Lecture 12b: 2022-04-06

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

A Communications Story

(A)lice from Alice's Adventures in Wonderland Illustration by Arthur Rackham, 1907 Sponge(B)ob Squarepants https://freesvg.org/sponge-bob-squarepant

(E)ve by Lucas Cranach the Elder (1528)

Eavesdropper

Symmetric vs asymmetric crypto

Symmetric encryption

- Uses same key for encryption and decryption.
- Fast, but doesn't work if Eve is able to intercept the key.
- Examples: Caesar cipher, Vigenère cipher, AES/Rijndael (2001)

Asymmetric encryption

- A.k.a. public-key crypto
- Knowing how to encrypt doesn't tell you how to decrypt.
- Slow, because lots of math, but able to secure communications even if Eve hears everything.
- Examples: RSA, ElGamal

Hybrid cryptosystems

- We can get the best of both worlds by combining the two.
- Use the slow public-key cryptography (e.g. RSA) to exchange a small message containing a key for the symmetric method.
- Then use the fast symmetric encryption method (e.g. AES) for everything else.

Old El Paso advertisement; Mia Agraviador pictured

Hello there! Here's my public bicy RSA Let's use "secret" conversation

Real-life example

Real-life example

💮 University of Toronto X Certificate for www.ut	oronto.ca × +	_		×
$\leftarrow ightarrow \mathbf{C}$ Solution \mathbf{C} Solution \mathbf{C} Solution \mathbf{C}	ert=MIIHCTCCBfGgAwIBAgIRAPUXn4hnOiz8Qf3%2BCkhWJIQwDQYJKoZIhvcNAQELB ☆		☑ #	≡
Validity				^
Not Before	Thu, 17 Mar 2022 00:00:00 GMT			
Not After	Fri, 17 Mar 2023 23:59:59 GMT			
Subject Alt Names				
DNS Name	www.utoronto.ca			
DNS Name	utoronto.ca			
Public Key Info				
Algorithm	RSA			
Key Size	2048			
Exponent	65537			
Modulus	A2:2B:BA:27:C0:90:BC:AC:12:18:35:31:9D:08:0A:27:83:06:3E:4B:FF:1A:0E:87:83:7)		
Miscellaneous				
Serial Number	00:F5:17:9F:88:67:3A:2C:FC:41:FD:FE:0A:48:56:24:84			
Signature Algorithm	SHA-256 with RSA Encryption			
Version	3			
Download	PEM (cert) PEM (chain)			
Fingerprints				
SHA-256	E7:71:DA:7F:6D:53:78:2A:4D:1C:CD:9A:22:2E:40:C2:EC:B3:50:5B:D3:E7:0B:B5:65:			

Toy example

- Alice: Hello there!
- Bob: generate RSA modulus/exponent
- Bob: sends public key

0

- Alice: choose symmetric key
- Alice: send RSAencrypted symmetric key to Bob
- Bob: decrypts to get symmetric key
- Both: communicate using symmetric key and cipher.

$$Hello!$$

$$p = 29 \quad q = 31 \quad n = pq = 891$$

$$\phi(n) = 28 \cdot 30 = 840$$

$$k = 11 \quad (811, 11)$$

$$(811, 11)$$

$$I = 5 \quad gcd(5, 791) = 1$$

$$5'' \quad n \cdot d \quad 899 = 738$$

$$'' T = 5$$

$$I \quad Lo \quad V \in M \quad ATH \in MA \quad TICS$$

$$N \quad Q \quad TA \quad TR \quad FY \quad TR \quad FY \quad NHX$$

Interactive exercise (groups of 3-5)

Part 1:

- Generate an RSA modulus n using 2-digit primes.
- Choose an exponent k such that $gcd(k, \phi(n)) = 1$
- Choose a Caesar cipher key a > 1 with gcd(a, n) = 1
- Encrypt the Caesar cipher key by $b \equiv a^k \pmod{n}$
- Write a short message of 15-30 characters.
- \bullet Encrypt the message using the Caesar cipher key a.
- Publish the message (*n*, *k*, *b*) and encrypted msg! Part 2:
- Decrypt other groups messages.
- First compute $a \equiv \sqrt[k]{b} \pmod{n}$
- Then use Caesar cipher key to decrypt the message.

Conclusion to Magic of Numbers

- What really are numbers?
- Where did math come from?
- Why did we invent so many numbers and operations?

- How do you think like a mathematician?
- What are some other types of number systems?
- How does the magic of numbers affect our lives?