Hybrid crypto interactive Lecture 12b: 2022-04-06

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

A Communications Story

(A)lice from Alice's Adventures in Wonderland Illustration by Arthur Rackham, 1907 Sponge(B)ob Squarepants https://freesvg.org/sponge-bob-squarepant

(E)ve by Lucas Cranach the Elder (1528)

Symmetric vs asymmetric crypto

Symmetric encryption

- Uses same key for encryption and decryption.
- Fast, but doesn't work if Eve is able to intercept the key.
- Examples: Caesar cipher, Vigenère cipher, AES/Rijndael (2001)

Asymmetric encryption

- A.k.a. public-key crypto
- Knowing how to encrypt doesn't tell you how to decrypt.
- Slow, because lots of math, but able to secure communications even if Eve hears everything.
- Examples: RSA, ElGamal

Hybrid cryptosystems

- We can get the best of both worlds by combining the two.
- Use the slow public-key cryptography (e.g. RSA) to exchange a small message containing a key for the symmetric method.
- Then use the fast symmetric encryption method (e.g. AES) for everything else.

Real-life example

Real-life example

4	University of Tor	ronto ×	Certificate for www.ut	oronto.ca × +			×
← -	ightarrow C	😆 Firefox	x about:certificate?c	ert=MIIHCTCCBfGgAwlBAglRAPUXn4hnOiz8Qf3%2BCkhWJlQwDQYJKoZlhvcNAQELB 分	\bigtriangledown	81	≡
							^
			Validity				
			Not Before	Thu, 17 Mar 2022 00:00:00 GMT			
			Not After	Fri, 17 Mar 2023 23:59:59 GMT			
		5.	ubject Alt Names				
		50	ibject Art Names				
			DNS Name	www.utoronto.ca			
			DNS Name	utoronto.ca			
			Public Key Info				
			Algorithm	RSA			
			Key Size	2048			
			Exponent	65537			
			Modulus	A2:2B:BA:27:C0:90:BC:AC:12:18:35:31:9D:08:0A:27:83:06:3E:4B:FF:1A:0E:87:83:7			
			Miscellaneous				
			Serial Number	00:F5:17:9F:88:67:3A:2C:FC:41:FD:FE:0A:48:56:24:84			
		Sia	nature Algorithm	SHA-256 with RSA Encryption			
		9	Version	3			
			Download	PEM (cert) PEM (chain)			
			Fingerprints				
			SHA-256	E7:71:DA:7F:6D:53:78:2A:4D:1C:CD:9A:22:2E:40:C2:EC:B3:50:5B:D3:E7:0B:B5:65:			~

Toy example

- Alice: Hello there!
- Bob: generate RSA modulus/exponent
- Bob: sends public key
- Alice: choose symmetric key
- Alice: send RSAencrypted symmetric key to Bob
- Bob: decrypts to get symmetric key
- Both: communicate using symmetric key and cipher.

Interactive exercise (groups of 3-5)

Part 1:

- Generate an RSA modulus n using 2-digit primes.
- Choose an exponent k such that $gcd(k, \phi(n)) = 1$
- Choose a Caesar cipher key a > 1 with gcd(a, n) = 1
- Encrypt the Caesar cipher key by $b \equiv a^k \pmod{n}$
- Write a short message of 15-30 characters.
- \bullet Encrypt the message using the Caesar cipher key a.
- Publish the message (*n*, *k*, *b*) and encrypted msg! Part 2:
- Decrypt other groups messages.
- First compute $a \equiv \sqrt[k]{b} \pmod{n}$
- Then use Caesar cipher key to decrypt the message.

Conclusion to Magic of Numbers

- What really are numbers?
- Where did math come from?
- Why did we invent so many numbers and operations?

- How do you think like a mathematician?
- What are some other types of number systems?
- How does the magic of numbers affect our lives?