Final Exam Review Lecture 12c: 2022-04-06

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Final Exam outline

1. Prime and composite numbers

- Sieve of Eratosthenes
- Runs of composite numbers (recall factorial construction)

2. Divisors and relative primes

- How to use a factorization to compute these things

3. Fractions/division in modular arithmetic

- Using reverse Euclidean algorithm and combinations

4. Powers in modular arithmetic

- Successive squaring, Fermat's Little Thm, Euler's Thm

5. Roots in modular arithmetic

- Reverse Euclidean algorithm + equivalent powers

6. Fermat primality test

- Use Fermat's Little Theorem and look for witnesses.

7. Cryptography

- Caesar cipher, RSA public/private key encryption

Prime and composite numbers

- A prime number is any number greater than 1 that is only divisible by 1 and itself. Composite otherwise.
- The prime numbers are multiplicative building blocks.
- Can find prime numbers up to n by Sieve of Eratosthenes up to \sqrt{n}.
- Can construct runs of composites using factorials.

Divisors and relative primes

- Given a factorization, can use the exponents to determine number of divisors.
- Given a factorization, can use the primes present to determine the number of relative primes / compute Euler's totient function.

Fractions in modular arithmetic

- One algorithm: compute the reciprocal by finding a combination for 1 , and then multiply.

Powers in modular arithmetic

- Successive squaring algorithm: to find a^{n}, write n as a sum of powers of 2 , and then square to find $a^{2}, a^{4}, a^{8}, a^{16}, \ldots$.
- Fermat's Little Theorem: $a^{p-1} \equiv 1(\bmod p)$ if $\operatorname{gcd}(a, p)=1$ for prime p.
- Euler's Theorem: $a^{\phi(n)} \equiv 1(\bmod n)$ if $\operatorname{gcd}(a, n)=1$

Roots in modular arithmetic

- Given $\sqrt[k]{a}(\bmod n)$, find $a^{m k} \equiv a$ using Euler's Thm, and then $\sqrt[k]{a} \equiv a^{m}$. Need to check conditions $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(k, \phi(n))=1$.

Primality testing

- Consider a number n.
- Pick a random number a.
- If $a^{n-1} \not \equiv 1(\bmod n)$, then a is composite.
- Otherwise, n passes the Fermat primality test, which decreases the chance of it being composite by at least 50\%.

Cryptography

- Caesar cipher just shifts all the letters by a fixed amount in the alphabet; a symmetric cipher.
- RSA public-key encryption makes use of the fact that factoring and square roots are hard in modular arithmetic.
- Hybrid cryptography combines both together, using public-key encryption to send a symmetric key, and then using the symmetric cipher for everything else.

How do you feel about the final?

E : This is fine

Conclusion to Magic of Numbers

-What really are numbers?
-Where did math come from?

- Why did we invent so many numbers and operations?
- How do you think like a mathematician?
-Whatsare some other types of number systems?
- How does the magic of numbers affect our lives?

