What is a number?

Counting, addition, \& subtraction Lecture 1a: 2022-01-10

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Who are you?

- What are you studying? (type "a", "b", "c", "d", or "e" in chat)

```
A: Arts, literature, and language
B: History, philosophy, and cultural studies
C: Social and behavioral sciences
D:Something not listed above
E: Undecided
```

- What year of university study are you in?

```
A: 1st
B: 2nd
C: 3rd
D: 4th
E: 5+
```

- You may also add "?" to pump up the confusion meter.

When were negative numbers invented?

```
A: Before 1000 BCE
B: }1000\mathrm{ BCE to 1000 CE
C: }1000\mathrm{ CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE
```


Chinese counting rods, circa 202 BCE - 220 CE https://en.wikipedia.org/wiki/Counting_rods

Questions to explore in MATA02

- What is a number?
- Relationship to counting and measurements
- Common operations on numbers (addition, subtraction, multiplication, division, exponentiation, roots)
- Can we extend what it means to be a number?
- Clock arithmetic (modular arithmetic)
- Real and complex numbers
- What's so special about prime numbers?
- How many are there?
- Can we find where they are?
- How are prime numbers used in our everyday lives?
- RSA encryption (used for online security "https")

Natural numbers (counting numbers)

- $1,2,3,4,5,6,7,8,9,10,11,12, \ldots$
- " 0 " is a late addition to the natural numbers, since it took mathematicians a lot longer to figure out that it needed a name.
- Are negative numbers "natural"?
- Are fractions "natural"?
- Are imaginary numbers "natural"?

```
A: Yes
B: No
C: Maybe???
D: Mathematicians are silly and come
up with weird arbitrary definitions.
E: None of the above
```


How to invent addition

- When putting together groups of objects, counting is slow

Think like a mathematician

- Have I seen this problem before?
- (more formally, prove that a new problem can be reframed as an old problem you already know how to solve)
- Once you have reduced a problem to a previously solved problem, your job as a mathematician is done.
- Counting circles and counting squares is the same, so you might consider creating a table that let's you look up putting together two numbers:

Mathematical notation: + and =

- Saying that we want to group together one group of 3 objects and another group of 5 objects to get a group of 8 objects is tedious. Let's invent symbols.
- Plus sign + used as $x+y$, where x and y are arbitrary numbers, means that we are counting the number total number of objects when we group together a group with x objects and another group with y objects.
- Equal sign = is used to denote that two expressions are the same

Addition properties

- Commutative property: $x+y=y+x$
- Associative property: $(x+y)+z=x+(y+z)$
- Additive identity property: $x+0=x$
- Distributive property (later when we invent multiplication)

How to invent subtraction

- What happens when we take away items?
- We could create a table like we did for addition.
- But then the table is incomplete because some operations don't give an answer (are "undefined")

What should we do?

A: It's fine. We don't need all subtractions to make sense.

B: Let's invent more numbers!

C: All of math is pointless

Inventing negative numbers

- What if we double all of the natural numbers except 0 and put a minus sign in front of the copies?
- The left copy of the numbers we refer to as "negative numbers"
- Subtraction $x-y$ is well-defined when $x>y$.
- Let's define $y-x$ where $x>y$ to be equal to $-(x-y)$

Think like a mathematician

- What problem remains after having invented negative numbers?

A: We don't know how to subtract negative numbers
B: We don't know how to add negative numbers
C: We don't know how addition and subtraction interact
D: All of the above
E: None of the above

The number line

- Let's write the negative and positive numbers on a long line, with negative numbers to the left and positive numbers to the right:
- Another way to understand addition of positive numbers is how far to the right we are moving along the number line.
- Another way to understand addition of negative numbers is by moving to the left on the number line.
- Subtraction means to move in the opposite direction, or to add the negative of a number

Teaser for future lectures

- We will invent multiplication, division, and square roots for the "integers" (i.e. all positive and negative whole numbers) the same kind of way.
- Notice that we made a choice to invent negative numbers though. What if instead of making a copy of the numbers, we turn the number line into a number circle? This will be the basis for "clock arithmetic" or "modular arithmetic".

