Inventing division Lecture 1d: 2022-01-12
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Think like a mathematician

- Mathematicians have a toolkit of problems they've solved already, and they try to turn a new problem into one they've seen before.
- Consider measuring the length of a rope by assigning a number on the positive number line.
- What lengths do we still not know how to compute?

> A: Cutting the rope in half
> B: Joining together two ropes
> C: Joining together 1000 ropes
> D: Cutting a piece of known length off the rope, and measuring the remainder.
> E: None of the above

Inventing division

- Subtraction allows you to "reverse" addition

$$
5+3=8 \quad 8-3=5
$$

- We can define division " \div " as "reversing" multiplication

$$
5 \times 3=15 \quad 15 \div 3=5
$$

- Definition: if $x \times y=z$, then $z \div y=x$
- What about $z \div y$ when there exists no x such that $x \times y=z$?

$$
\begin{array}{ll}
\text { e.g. } 5 \div 2 & 2 \times 2=4 \\
& 2 \times 3=6
\end{array}
$$

What should we do?

C: All of math is pointless

Fun facts with Squidward!

A: It's fine. We don't need all divisions to make sense.

B: Let's invent more numbers!
D: It's fine. The answer doesn't need to be a number.

THE CTMTITAOF पEEMTIDTBE54

Inventing fractions

- What if we simply define a new number by $x \div y=\frac{x}{y}$ for all integers (positive or negative whole numbers) x and y ?

Please type in chat what goes wrong

- Numbers now have multiple labels

$$
\frac{4}{2}=2 \text { or } \underbrace{\frac{3}{2}=3}_{\text {new }} \text { or ores for ot d numbers }
$$

- Definition is inconsistent if $y=0$, so we don't allow it.

$$
\left.\begin{array}{l}
\frac{3}{6} \text { implies } 3 \div 0=\frac{3}{0} \quad \text { so } \frac{3}{6} \times 0=3 \\
\text { but } 0 \text { times anything is } 0
\end{array}\right\} \begin{aligned}
& \text { need calentos } \\
& \text { and limits t } \\
& \text { formalize } \infty
\end{aligned}
$$

Equivalence of fractions

- When are two fractions different ways of writing the same number?

$$
\begin{array}{ll}
\frac{x}{y} \frac{x}{y} \frac{z}{w} & \frac{2}{5}=\frac{4}{w} \quad \frac{2}{5}=\frac{2}{2} \cdot \frac{2}{5} \\
\frac{x}{y} \cdot y=\frac{z}{w} \cdot y & 2 \cdot 10=5 \cdot 4=20 \\
x=\frac{z}{w} \cdot y & \text { Also }, \frac{0}{5}=\frac{0}{3} \\
x \cdot w=z \cdot y &
\end{array}
$$

- When the numerator of one fraction times the denominator of the other is equal to its denominator ties the numerator of the other.

Characterizing reciprocals

- With the invention of negative numbers, we can also "reverse" addition by adding a negative number.

$$
5+3=8 \quad 8+(-3)=5
$$

- Once we've invented fractions, we can also reverse multiplication by any $x \neq 0$ by multiplying by $\frac{1}{x}$ (the "reciprocal")

$$
\begin{array}{r}
5 \times 3=15 \quad 15 \div 3=5 \\
\frac{15}{3}=15 \times \frac{1}{3}=5
\end{array}
$$

Fractions and addition

- How do we add together fractions? We can use the distributive property and reciprocals.

$$
\begin{aligned}
\text { perty and reciprocals. } \\
\begin{aligned}
2+\frac{5}{3} & =2 \cdot 1+\frac{5}{3}=2 \cdot \frac{3}{3}+\frac{5}{3} \\
& =2 \cdot 3 \cdot \frac{1}{3}+5 \cdot \frac{1}{3}=\frac{2 \cdot 3}{3}+\frac{5}{3} \\
& =(2 \cdot 3+5) \cdot \frac{1}{3}=(6+5) \cdot \frac{1}{3} \\
& =11 \cdot \frac{1}{3}=\frac{11}{3}
\end{aligned}
\end{aligned}
$$

Alternative: division with remainder

- Alternately, we can have our answer not be a single number.
- Consider dividing 7 phones among 3 people evenly. Using fractions is a bad idea.

- Instead, we cancsimply sadythat each person gets 2 phones, with 1 phone "remaining" as the "remainder".

$$
\left.\begin{array}{l}
7 \div 3=2 \text { remained } 1 \\
\text { or } 7=2 \cdot 3+1
\end{array}\right\} \begin{aligned}
& \text { division is } \\
& \text { the reverse }
\end{aligned}
$$

Connection between two divisions

- Division with remainder and division giving fractions can be converted into each other because if we convert the fraction to an integer plus a fraction where the numerator is greater than the denominator, the remainder is the numerator.

$$
\begin{aligned}
7 \div 3 & =\frac{7}{3}=\frac{6+1}{3}=\frac{6}{3}+\frac{1}{3}=2+\frac{1}{3} \\
7 \div 3 & =2 \text { remainder } \\
7 & =2.3+1 \\
\frac{7}{3} & =2+\frac{1}{3}
\end{aligned}
$$

Putting fractions on the number line

- Using the form from the previous slide, we can put fractions on the number line by using the remainder and even spacing.

- Any number we can write as a fraction is a "rational number"

Try it out: solve a linear equation

$$
\begin{aligned}
& \text { - } \frac{1}{2} x-\frac{3}{8}=\frac{3 x}{10}+\frac{1}{8} \\
& \frac{1}{2} x=\frac{3 x}{10}+\frac{1}{8}+\frac{3}{8} \\
& \text { add } \frac{3}{8} \\
& \frac{1}{2} x=\frac{3 x}{10}+\frac{4}{8} E \\
& 4 x=\frac{24 x}{10}+4 \\
& \frac{1}{8}+\frac{3}{8}=1 \cdot \frac{1}{8}+3 \cdot \frac{1}{8} \\
& =(1+3) \cdot \frac{1}{8} \\
& =4 \cdot \frac{1}{8}=\frac{4}{8}=\frac{1}{2} \\
& 4 x=\frac{12 x}{5}+4 \\
& 4 x-\frac{12 x}{5}=4 \\
& \text { (subtract } \frac{12 x}{5} \text {) } \\
& \text { A: } x=-\frac{5}{4} \\
& \mathrm{~B}: x=\frac{5}{2} \\
& 20 x-12 x=20 \\
& \text { (multiply 5) } \\
& \text { C: } x=\frac{5}{4} \\
& \text { D: } x=5 \\
& \mathrm{E} \text { : None of the above }
\end{aligned}
$$

(divine 8) $x=\frac{20}{8}=\frac{5}{2}$

On decimals

- Finite decimal numbers can be thought of as a fraction over 1, $10,100,1000,10,000$, and so on (powers of 10, but we haven't invented powers yet).

$$
1.415=\frac{1415}{1000} \quad \text { or } \quad 1+\frac{4}{10}+\frac{1}{100}+\frac{5}{1000}
$$

- Most fractions do not give a finite decimal number.

$$
\frac{1}{3}=0.3333
$$

- Properly understanding infinite decimals requires understanding limits, which is rigorously done in calculus, though we can approximate with a finite decimal.

```
\frac{1}{7}\approx0.142857
```

