Powers and Roots Lecture 2a: 2022-01-17
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Different reasons to invent numbers

- Practical applicability
- Negative numbers made it easier to talk about financial debt.
- Fractions let you measure smaller quantities of a continuous substance

- Theoretical consistency
- Negative numbers mean that all subtractions have an answer.
- Fractions mean that almost all divisions have an answer.

Inventing operations

- Repeated counting = addition. Reversed by subtraction.
- Repeated addition = multiplication. Reversed by division.
- Repeating multiplication = powers/exponents

Think like a mathematician

- In school, we learn about addition, multiplication, and exponentiation. Can we keep on going?
A: Yes
B: No
C: Maybe
D: Why bother?
E: None of the above
- Why don't we learn about these more in school?

B: Practically useless
C: We did! Don't you remember?

Why care about powers?

- Suppose you owe $\$ 10,000$ in student debt which grows at 10% a year. How much do you owe in 10 years if you don't pay it off?


```
A: $10,000
B: $20,000
C: $30,000
D: $40,000
E: Even more money
```

- Suppose the number of people infected by COVID doubles every 3 days. If one person is infected today, about how many are infected after a month?

```
A: 10
B: }10
C: 1,000
D: 10,000
    E: Even more people
```


Relationships to existing numbers

- Inventing numbers and operations isn't enough; we need to figure out how they relate to existing numbers/operations.
- Ex. distributive rule: $a(x+y)=a x+a y$
- Subtle consequence of the distributive rule: adding fractions

Exponents and addition

$\cdot a^{m+n}=a^{m} a^{n}$

Exponents and subtraction

$a^{m-n}=\frac{a^{m}}{a^{n}}$

Negative exponents
$a^{-m}=\frac{1}{a^{m}}$

O-exponents

- $a^{0}=1$ for any $a \neq 0$

Exponents and multiplication

$\cdot\left(a^{m}\right)^{n}=a^{m n}$

Multiplication and exponents

- $(a b)^{m}=a^{m} b^{m}$
- Similar to distributive property $m(a+b)=m a+m b$ because just as multiplication is repeated addition, exponentiation is repeated multiplication.

Fractional exponents and roots

- $a^{\frac{1}{n}}=\sqrt[n]{a}$ the nth root of a.

Exponent rules summarized for $a, b>0$

- $a^{0}=1$
- $\left(a^{m}\right)^{n}=a^{m n}$: taking a power multiplies exponents together
- $a^{m} a^{n}=a^{m+n}$: multiplying like powers adds the exponents
- $a^{-m}=\frac{1}{a^{m}}$: negative exponents are reciprocals
- $(a b)^{m}=a^{m} b^{m}$

Try it out

$\cdot\left(81^{\frac{1}{4}}\right)^{3} \cdot 2^{-3} 2^{2}$

$$
\begin{aligned}
& \text { A: } \frac{27}{2} \\
& \text { B: } 1 \\
& \text { C: } \frac{27}{64} \\
& \text { D: } \frac{64}{27} \\
& \text { E: None of the above }
\end{aligned}
$$

.$\left(\left(8_{1 \frac{1}{14}}\right)^{6} \cdot 2^{\left.-42^{2}\right)^{3}}\right)^{0}$

Think like a mathematician

- We already have a lot of different kinds of numbers: natural numbers, negative numbers, and fractions.
- Do we need even more kinds of numbers for powers?
- What about for roots?

```
A: Yes
B: No
C: Maybe
D:Too many numbers!
E: None of the above
```

