How to solve it Lecture 2b: 2022-01-19
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Codifying solution strategies

- How to Solve It (1945) by George Polya
- Understand the problem
- What's the start and end point of the problem?
- Can you rephrase the problem?
- Can you draw a picture?
- Devise a plan
- What methods have you learned in class?
- Are there special cases that are easier?
- Can you work backwards?
- Carry out the plan
- Often what you've practice, but you have to be careful.

- Look back on your work
- Did you check your work using an alternate strategy?
- What strategies worked for you on this problem, and can you use it on similar future problems?

Understanding the problem

- Solve for x in the following: $\frac{3}{7} x+\frac{2}{35}=\frac{5}{3} x-\frac{14}{15}$
-What's the start point?
A: An equation with two variables
$\begin{aligned} & \text { B: An equation with fractions } \\ & \text { C: Facts about the current state of the world }\end{aligned} \quad$ biggest part are the
D: A set of known operations
E : None of the above
- What's the end point?

A: Knowing the value of x
B: An interpretation of the equation
C: A prediction for the future
D: A newly invented kind of number
E : None of the above

Devise a plan: $\frac{3}{7} x+\frac{2}{35}=\frac{5}{3} x-\frac{14}{15}$

- What are methods you learned for manipulating equations?

Respond in chat

- Replacing a value with something equal to that value.
- Additive/multiplicative identities.
- Doing the same thing to both sides.
- Commutative/Associative/Distributiv e properties.

$$
\begin{gathered}
x+2=\frac{4}{2} \\
\Rightarrow x+2=2 \text { becare } \frac{4}{2}=2 \\
\frac{2}{2} \cdot x+\frac{x}{2}+\frac{3}{2}=0 \\
2 x+x+3=0 \\
2(x+1)=4 x+2
\end{gathered}
$$

- How to add fractions

$$
\frac{1}{3} x+\frac{1}{2} x=\frac{2}{6} x+\frac{3}{6} x=\frac{5}{6} x
$$

Execute the plan: $\frac{3}{7} x+\frac{2}{35}=\frac{5}{3} x-\frac{14}{15}$

- Use manipulations to convert to $x=$?

Multiply everything by 35 :

$$
\begin{aligned}
35\left(\frac{3}{7} x+\frac{2}{35}\right) & =35\left(\frac{5}{3} x-\frac{14}{15}\right) \\
15 x+2 & =\frac{165}{3} x-7 \cdot 8 \cdot \frac{14}{3.8} \\
15 x+2 & =\frac{165}{3} x-\frac{98}{3}
\end{aligned}
$$

Multiply everything by 3
Add 98 to both sides

$$
\begin{aligned}
& 104=120 x \\
& x=\frac{10^{4}}{120} \\
& x=\frac{52}{60}=\frac{26}{30}=\frac{13}{15}
\end{aligned}
$$

$$
45 x+6=165 x-98
$$

Subtract both sides by $45 \times$

$$
\theta=120 x-98
$$

Look back: $\frac{3}{7} x+\frac{2}{35}=\frac{5}{3} x-\frac{14}{15}$

- Did you check your work using an alternate strategy? $x=\frac{13}{15}$

Plug in potatial solution:

$$
\begin{aligned}
\frac{8}{7} \cdot \frac{13}{15}+\frac{2}{35} & =\frac{5}{3} \cdot \frac{13}{15}-\frac{14}{15} / \frac{45}{7}=\frac{65}{3}-14 \\
\frac{13}{35}+\frac{2}{35} & =\frac{13}{9}-\frac{14}{15} \\
\frac{15}{35} & =\frac{13}{9}-\frac{14}{15} \\
\frac{3}{7} & =\frac{13}{9}-\frac{14}{15}
\end{aligned}
$$

Look back
$35=7.5$

- Why did we not get the right solution?

$$
\begin{aligned}
& \text { Multiply by } 35 \text { N } \\
& 35 \cdot\left(\frac{3}{7} x+\frac{2}{35}\right)=35\left(\frac{5}{3} x-\frac{14}{15}\right) \\
& \text { * } 15 x+2=\frac{1785}{3} x-\overbrace{7}^{35} \cdot 8 \cdot \frac{14}{3 \cdot 8} \\
& 15 x+2=\frac{175 x}{3}-\frac{98}{3} \\
& 45 x+6=175 x-98 \\
& 6=130 x-98 \\
& 130 x=104 \\
& \begin{array}{l}
x=\frac{104}{130}=\frac{52}{65}=\frac{13 \cdot 4}{13 \cdot 5}=\frac{4}{5} \\
35\left(\frac{5}{3} x-\frac{14}{15}\right)=35 \cdot \frac{5}{3} x-38 \cdot \frac{74}{\frac{14}{3}}
\end{array}
\end{aligned}
$$

Recheck our new work

- Does $x=\frac{4}{5}$ solve $\frac{3}{7} x+\frac{2}{35}=\frac{5}{3} x-\frac{14}{15}$?

$$
\begin{aligned}
\frac{3}{7} \cdot \frac{4}{5}+\frac{2}{35} & =\frac{5}{3} \cdot \frac{4}{5}-\frac{14}{15} \\
\frac{12}{35}+\frac{2}{35} & =\frac{20}{15}-\frac{14}{15} \\
\frac{14}{35} & =\frac{6}{15} \\
\frac{2 \cdot 7}{5 \cdot 7} & =\frac{2 \cdot 3}{5 \cdot 3} \\
\frac{2}{5} & =\frac{2}{5}
\end{aligned}
$$

Look back and reflect

- What strategies worked on this problem; what can you use in the future?

- Multiplying both sides of the equation by the denominator to simplify the equation.
- Alternately, can multiply by $1=\frac{m}{m}$, but that can be more complicated to keep track of.
- After getting rid of the denominator, "moving" everything with an x to one side, and "moving" everything else to the other side.
- Checking the final answer by plugging it in can help when you make a mistake.

Why care about powers?

$(1.1)^{10}=\left(1.1^{5}\right)^{2}$

- Suppose you owe $\$ 10,000$ in student debt which grows at 10% a year. How much do you owe in 10 years if you don't pay it off?

$$
\begin{array}{r}
10,000 \times(1.1) \times(1.1) \times \cdots \times(1.1) \\
=10,000 \times(1.1)^{10} \approx 861,159 \\
\$ 25,937
\end{array}
$$

```
A: $10,000
B: $20,000
C: $30,000
D: $40,000
    E: Even more money
```

- Understand the problem: need to predict the future value based on a yearly growth rate of 10%.
- Devise a strategy: multiply initial value by 1.1 ten times.
- Execute the plan: see above.
- Look back and check: try $\left(1.1^{5}\right)^{2}=(1.61)^{2}=2.59$, so clearly there's a problem in our computation.

Inventing negative numbers

- Understand the problem:

$$
3-5 \neq \text { pos. number }
$$

- When you only have positive integers, sometimes subtracting things doesn't give a number.
- Devise a strategy:
- Invent some new numbers, and give them a name: "negative" integers
- Then need to create a new number system with both positive and negative integers that fits them all together.

- Need to check that addition/subtraction both work properly stilil.
- Execute the strategy:
- Actually do the math and create new addition/subtraction tables.
- Look back and reflect:

$$
3-5=-2
$$

- Does this solve the original problem? Can we use this kind of method on other problems in the future, like division and fractions?

Try it out

$\left({ }^{1} 3^{3}\right.$ and it is h simpl: fited fom.

- Rewrite $\left(81^{\frac{1}{4}}\right)^{3} \cdot 2^{-3} 2^{2}$ as $\frac{m}{n}$, where m, n are both integers.
- Understand the problem: turn it into a fraction.
- Design a strategy: use exponentiation rules
- $a^{0}=1$
- $\left(a^{m}\right)^{n}=a^{m n}$: taking a power multiplies exponents together
- $a^{m} a^{n}=a^{m+n}$: multiplying like powers adds the exponents
- $a^{-m}=\frac{1}{a^{m}}$: negative exponents are reciprocals
- $(a b)^{m}=a^{m} b^{m}$
- Implement the strategy
- Look back and reflect; can you check your answer?

Try it out

$$
\begin{aligned}
& \frac{3}{\left(81^{\frac{1}{4}}\right)^{3} \cdot 2^{-3} 2^{2}}=3^{3} \cdot 2^{-3+2} \\
&\left(81^{\frac{1}{2}}\right)^{\frac{1}{2}}=9^{\frac{1}{2}}=3=27 \cdot 2^{-1} \\
&=\frac{27}{2}
\end{aligned}
$$

A: $\frac{27}{2}$
B: 1
C: $\frac{27}{64}$
D: $\frac{64}{27}$
E: None of the above

$$
\cdot\left(\left(88_{1}^{1}\right)^{6} \cdot 2^{-42^{3}}\right)^{0}=1
$$

Try it out

- Rewrite $\left(\frac{x^{-1} y^{2} z^{0}}{x^{3} y^{-4} z^{2}}\right)^{-1}$ as a product or quotient of powers in which each variable occurs but once, and all exponents are positive. Assume all variables represent positive real numbers only.
- Understand the problem:
- Similar to previous problem, except instead of wanting integers at the end, we want positive powers of x, y, z.
- Design a strategy:
- Use exponentiation rules to remove negative powers and cancel out.
- Look back and reflect:~ Executation!
- Is there an easy way to check the answer?
- How similar is this to solving the previous problem?

$$
\begin{aligned}
& \text { Try it out: }\left(\frac{x^{-1} y^{2} z^{0}}{x^{3} y^{-4} z^{2}}\right)^{-1}=\frac{x^{3} y^{-4} z^{2}}{x^{-1} y^{2} z^{0}} \\
& =\left(\frac{x^{-1} y^{2}}{x^{3} y^{-4} z^{2}}\right)^{-1} \text { be cause } z^{0=1} \\
& =\left(\frac{x}{x} \cdot \frac{y^{4}}{y^{4}} \cdot \frac{x^{-1} y^{2}}{x^{3} y^{-4} z^{2}}\right)^{-1} \\
& \begin{array}{l}
=\left(\frac{y^{6}}{x^{4} z^{2}}\right)^{-1} \\
=\frac{x^{4} z^{2}}{y^{6}} \text { reciprocal }
\end{array} \\
& x=1 \quad y=2 \quad z=3 \\
& \begin{array}{c}
\left(\frac{1 \cdot 2^{2} \cdot 1}{1^{3} \cdot 2^{-4} \cdot 3^{2}}\right)^{-1}=\left(\frac{4}{\frac{1}{16} \cdot 9}\right)^{-1}=\left(\frac{64}{9}\right)^{\prime} \\
1^{4} \cdot 3^{2}
\end{array} \\
& \frac{1^{4} \cdot 3^{2}}{2^{6}}=\frac{9}{64} \\
& \text { A: } \frac{x^{2}}{y^{2} z^{2}} \\
& \text { B: } \frac{x^{4}}{y^{2} z^{2}} \\
& \text { C: } \frac{x^{2} y^{6}}{z^{2}} \\
& \text { D: } \frac{x^{4} z^{2}}{y^{6}} \\
& \mathrm{E} \text { : None of the above }
\end{aligned}
$$

Think like a mathematician

- We already have a lot of different kinds of numbers: natural numbers, negative numbers, and fractions.
- Do we need even more kinds of numbers for powers?

$$
2^{10}=2 \times 2 \times 2 \cdots \times 2 \quad \text { No }
$$

-What about for roots?


```
A: Yes
    B: No
    C: Maybe
    D:Too many numbers!
    E: None of the above
```

