Divisibility and the Euclidean Algorithm Lecture 2c: 2022-01-19

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Abstract definition and examples

- A positive integer a is divisible by another positive integer b if $a \div b=\frac{a}{b}=c$, where c is a positive integer.
- Equivalently, $a \div b$ has no remainder.
- Alternately, there exists a positive integer c such that $b c=a$.
Ex. $\quad 24 \div 6=\frac{24}{6}=4$
$(4 \times 6=24)$ divisible!
$17 \div 1=\frac{17}{1}=17$
$(17 \times 1=17)$ divisis)
Ex
$17 \div 2=\frac{17}{2}=8 \frac{1}{2} \quad 8 \mathrm{rem} / \quad(8 \times 2+1=17)$ not divisible
Ex.

$$
\begin{aligned}
& 1 3 \longdiv { \frac { 3 } { 5 1 } } \mathrm { rem } 1 2 \\
& \frac{39}{12} \\
& 51=17 \times 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { A: Yes } \\
& \text { B: No } \\
& \text { C: Maybe } \\
& \text { E: None of the above }
\end{aligned}
$$

Long division

- Division is the opposite of multiplication, but it is somehow "harder" than multiplication and involves lots of multiplications.
- Example:

- Sometimes, reversing operations is harder.

History of operations

- Negative numbers were invented circa 202 BCE - 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- The Babylonians didn't have direct division, but could multiply by inverses.

En. Say we know $\frac{1}{5}=0.2$

$$
\text { Then } \frac{11}{5}=11 \times 0.2=2.2
$$

When was direct division invented?

A: Before 1000 BCE
B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE

Rhind papyrus, British Museum 10057
https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

$$
\sim 1500 \text { BCE, Egypt }
$$

When was modern long division invented?

```
A: Before 1000 BCE
B: }1000\mathrm{ BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE
```

$5 \longdiv { 1 5 / 3 }$

Henry Briggs, 1560-1630
Professor at Oxford University

What numbers are divisible by 4?

- Solution 1: we can just list out numbers and test them.

$$
\begin{array}{llllllllllll}
x & 2 & 75 & 4 & 5 & 6 & 7 & 8 & \text { O } & 16 & \text { H } & 12 \\
15 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \text { 21 } & 2 \pi & 25 & 24
\end{array}
$$

- Solution 2: once we know the pattern, we can recognize that it's just all multiples of 4, which we could also prove.
If a is divisible by 4, then $\frac{a}{4}=b$, so $a=4 b$
If $a=4 b$, then $\frac{a}{4}=b$, so a d divisible by 4 .
Thus, the numbers divisible by 4 arc just all the multiples of 4 .

What numbers are divisible by both $4 \& 6$?

- Obviously, $24=4 \times 6$ is divisible by both $4 \& 6$.
- Also, any multiple of 24 is, for the following reason:

If $a=24 b$, then $\frac{a}{4}=\frac{24 b}{4}=6 b$, an integer,
It $a=24 b$, then $\frac{a}{6}=\frac{24}{6} b=4 b$, an integer, so a is double by b.
This, multiples of 24 are divisible by both

Are any other numbers divisible by $4 \& 6$?

- Solution 1: test all numbers for divisibility.
- Solution 2: list out numbers divisible by 4, and list out numbers divisible by 6 , and look for

A: Yes
B: No
C: Maybe
E: None of the above any overlapping numbers.

$$
\begin{aligned}
& \begin{array}{lllllllll}
4 b & 4 & 8 & \frac{12}{18} & 16 & 20 & 24, & 28, & 32, \\
6 b & 6 & 12 & 18 & 30 & 36 & 42 & \cdots .
\end{array} \\
& \text { So } 12,24,36 \text { are divisila by both }
\end{aligned}
$$

- Hypothesis (guess): all multiples of 12 are divisible by 4 and 6 .

Proof of hypothesis

- Claim: the set of all numbers divisible by both 4 and 6 is exactly all multiples of 12 .
- Proof step 1: show that all multiples of 12 are divisible by $4 \& 6$. If $a=12 b, \quad(a, b$ integers $)$, then

$$
\frac{a}{4}=3 b \text { and } \frac{a}{6}=2 b \text {, so } a \text { is divisible by both } 4+6 \text {. }
$$

- Proof step 2: show that all numbers divisible by $4 \& 6$ are multiples of 12 .
Suppose $a=12 b t r$, where r is one of $1,2, \ldots, 11$ Then $\frac{a}{4}=3 b+\frac{r}{4}$ and $\frac{a}{b}=2 b+\frac{r}{b}$. In order to be divisible by both $4+6, \frac{r}{4}$ and $\frac{r}{6}$ must both be integers. But, no integer b/f $1+11$ Works, so a cannot be danish

General rule: least common multiples

- Problem: given two numbers a and b, what numbers are divisible by both a and b ?
- Solution: the least common multiple $\operatorname{lcm}(a, b)$, defined the be the smallest number that is a multiple of both a and b.
Ex. $\operatorname{Icm}(6,9)=18$ The numbers divisible by $6+9$ $6,12,18,24$ are the multiples of 18 . 9, 18
Ex. $\operatorname{lcm}(15,21)=105$

$$
\begin{array}{lllllll}
15 & 30 & 45 & 60 & 75 & 90 & 105 \\
21 & 42 & 63 & 84 & 105 & &
\end{array}
$$

General proof sketch

- Earlier we proved that the set of numbers divisible by 4 and 6 is exactly the multiples of 12.
- We can prove that the set of numbers divisible by a and b is exactly the multiples of $\operatorname{lcm}(a, b)$ using the same ideas.
- First prove that any multiple of $\operatorname{lcm}(a, b)$ is divisible by both a and b.

$$
\frac{c \cdot \operatorname{lcm}(a, b)}{a}=c \cdot \frac{\operatorname{lcom}(a, b)}{a} \text { integer } b / c \operatorname{lcm}(a, b)
$$

- Then prove that if a number is not a multiple of $\operatorname{lcm}(a, b)$, then it will have a remainder when divided by one of a or b.
$C \cdot \operatorname{lcm}(a, b)+r$ is divisible by a if $\frac{r}{a}$ is an integer b if $\frac{r}{b}$ is an integer
But, if r is multiple of b of h a and b, it cannot be smaller than $\operatorname{lcm}(a, b)$

Try it out

-What is the set of numbers divisible by 14 and 21?

A: All multiples of 14
B: All multiples of 21
C: All multiples of 28
D: All multiples of 42
E : None of the above
-What is the set of numbers divisible by 2 and 10 ?

Can we find the $\operatorname{lcm}(a, b)$ faster?

- Sometimes, the $\operatorname{lcm}(a, b)=a b$

$$
\text { Ex. } \operatorname{lcm}(3,5)=15
$$

$$
\begin{aligned}
& 3,6,9,12,15 \\
& 5,10,15
\end{aligned}
$$

- Sometimes, the $\operatorname{lcm}(a, b)=a$, where $a>b$.

$$
\text { Ex. } \quad \operatorname{lcm}(2,8)=8 \quad 2,4,6,8
$$

- When $a>b, \operatorname{lcm}(a, b) \neq b$, because a positive multiple of a cannot be smaller than a itself.
- Can we figure out when the other two cases are true?

Sometimes, the $\operatorname{lcm}(a, b)=\max (a, b)$

- When is this true? Let's take a look at a couple of examples.

$$
\begin{array}{ll}
\operatorname{lcm}(2,4)=4 & \operatorname{lcm}(2,8)=8 \\
\operatorname{lcm}(2,6)=6 & \operatorname{lcm}(4,8)=8 \\
\operatorname{lcm}(3,6)=6 & \operatorname{lcm}(8,8)=8
\end{array}
$$

- Note: it seems to always happen when the bigger number is a multiple of the smaller.
- This makes sense because if the least common multiple is the larger number, that means that the larger number is a multiple of the smaller number.

Sometimes, the $\operatorname{lcm}(a, b)=a b$

- When is this true?

Respond in chat with hypotheses

a	b	$a b$	$\operatorname{lcm}(a, b)$	$\frac{a b}{\operatorname{lcm}(a, b)}$
2	$\frac{5}{2}$	10	10	1
4	6	24	12	2
3	7	21	21	1
4	9	36	36	1
9	15	135	45	3
10	21	210	210	1
14	21	294	42	7
15	21	315	105	3
12	22	264	132	2
8	27	216	216	1

Do you notice anything about the right-most column and its relationship to $a \& b$?

Greatest common divisors

- Let $\operatorname{gcd}(a, b)$ be the largest number dividing both a and b.

Ex.

$$
\begin{array}{ll}
\operatorname{gcd}(4,6)=2 & \operatorname{gcd}(5,10)=5 \\
\operatorname{gcd}(9,33)=3 & \operatorname{gcd}(1,5)=1
\end{array}
$$

- Important Theorem: For any two numbers a and b, $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$ or equivalently, $a b=\operatorname{lcm}(a, b) \times \operatorname{gcd}(a, b)$

Ex.

$$
\begin{gathered}
\operatorname{gcd}(4,6)=2 \quad \operatorname{lcm}(4,6)=12 \\
4 \times 6=2 \times 12=24
\end{gathered}
$$

Can we find the $\operatorname{gcd}(a, b)$ faster?

- If we can find the god, we can find the lcm, and vice versa, by just dividing from the product.
- But now we have to ask if we can quickly find the ged.
- One solution is to write out all the divisors of both.

$$
\begin{aligned}
& \text { Ex. Find } \operatorname{gad}(9,12)=3 \\
& \text { Divisors of } 9: 1, x, 3] 4,8,6, \neq, 8,9 \\
& \text { Divisors of } 12: 1,2, \sqrt{3}, 4,8,6, \not, 7,8,9,10, \not, 12
\end{aligned}
$$

- Not much faster than filing kam directly. $\operatorname{kan}(9,12)=36$

$$
\begin{aligned}
& \text { Multiples of } 9: 9,18,27,36 \\
& \text { Multiples of } 12: 12,24,36
\end{aligned} 9 \times 12=3 \times 36
$$

Smarter method (Euclid's algorithm)

- Find the $d=\operatorname{gcd}(30,69)$

If $\frac{30}{d}$ and $\frac{69}{d}$ are integers, then so is $\frac{30}{d}+\frac{69}{d}$ $\begin{array}{ll}11 & 11 \\ x & \text { Then } x t y, x-y, ~ 2 x t y, ~ \\ x & -3 y \text {, ere. }\end{array}$ are integers (might be regitio)
Now $\quad 69 \div 30=2$ remainder $9 . \quad 69=30 \cdot 2+9$

$$
\begin{aligned}
& \Rightarrow \quad 69-30 \cdot 2=9 \\
& \Rightarrow \quad \frac{69}{\frac{d}{x}}-\frac{30}{d} \cdot 2=\frac{9}{d} \text {, so } \frac{9}{d} \text { is an integer, }
\end{aligned}
$$

Conversely, $\operatorname{ged}(9,30)$ also divides 69 , so $\operatorname{gcd}(30,69)=\operatorname{gcd}(9,30)$

Continuing $\operatorname{gcd}(30,69)$

$$
\begin{gathered}
\cdot \operatorname{gcd}(30,69)=\operatorname{gcd}(9,30) \\
\text { Notice } 30=3.9+3,30 \div 9=3 \text { rem } 3 \\
\operatorname{gcd}(9,30)=\operatorname{gcd}(3,9)=3 \\
\Rightarrow \operatorname{gcd}(30,69)=3
\end{gathered}
$$

The Euclidean Algorithm

- To find the $\operatorname{gcd}(a, b)$, with $b>a$:
- Divide a into b, and let r be the remainder.
- If $r=0$, then we're done; a divides b and $\operatorname{gcd}(a, b)=a$.
- If $r \neq 0$, then we replace (a, b) with (r, a) and repeat.

Ex.

$$
\begin{aligned}
& \operatorname{gcd}(24,1000)=\operatorname{gcd}(16,24) \\
& 41 r^{16}=\operatorname{gcd}(8,16)=8 \\
& 2 4 \longdiv { \frac { 1 0 0 0 } { 4 0 } } \\
& \frac{24}{16}
\end{aligned}
$$

Try it out

- Find the $\operatorname{gcd}(24,1234)=\operatorname{gcd}(10,24)=\operatorname{gcd}(4,10)$

$$
\begin{array}{rl}
2 4 \longdiv { 1 2 3 4 } & 510 \\
\frac{120}{34} & 10 \sqrt{24}-4 \\
\frac{24}{10} & \frac{20}{4}
\end{array} \quad=2
$$

A: 2
C: 4
D: 6
E: None of the above

Try it out

- Find the least common multiple of 36 and 3222 ?

```
A:3222
B: }644
C: }933
D:12888
E: None of the above
```

