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Abstract definition and examples

* A positiveainteger a is divisible by another positive integer b if

a+b= > = where c is a positive integer.
* Equivalently, a = b has no remainder.
* Alternately, there eX|sts a positive integer ¢ such that bc = a.
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Long division

* Division is the opposite of multiplication, but it is somehow
“harder” than multiplication and involves lots of multiplications.
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* Sometimes, reversing operations is harder.




History of operations

* Negative numbers were invented circa
202 BCE — 220 CE in China.

* Multiplication was invented around
4000 BCE by the Babylonians.

* The Babylonians didn’t have direct
division, but could multiply by inverses.
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When was direct division invented?

A: Before 1000 BCE

B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE

D: 1500 CE to 1800 CE

E: After 1800 CE

Rhind papyrus, British Museum 10057
https://en.wikipedia.org/wiki/Rhind_Mathematical _Papyrus
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When was modern long division invented?

A: Before 1000 BCE

B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE

D: 1500 CE to 1800 CE

E: After 1800 CE
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Henry Briggs, 1560-1630
Professor at Oxford University




What numbers are divisible by 47?

* Solution 1: we can just list out numbers and test them.
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 Solution 2: once we know the pattern, we can recognize that it’s
just all multiples of 4, which we could also prove.
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What numbers are divisible by both 4 & 67

* Obviously, 24 = 4 X 6 is divisible by both 4 & 6.

* Also, any multiple of 24 is/\for the following reason:
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Are any other numbers divisible by 4 & 67

 Solution 1: test all numbers for divisibility. /S: \I\fles
. NO
* Solution 2: list out numbers divisible by 4, and | c: Maybe

list out numbers divisible by 6, and look for E: None of the above

any overlapping numbers.
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* Hypothesis (guess): all multiples of 12 are divisible by 4 and 6.
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Proof of hypothesis

e Claim: the set of all numbers divisible by both 4 and 6 is exactly
all multiples of 12.

* Proof step 1: show that all multiples of 12 are divisible by 4 & 6.

* Proof step 2: show that all numbers divisible by 4 & 6 are
multiples of 12.




General rule: least common multiples

* Problem: given two numbers a and b, what numbers are
divisible by both a and b?

* Solution: the least common multiple lcm(a, b), defined the be
the smallest number that is a multiple of both a and b.
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General proof sketch

* Earlier we proved that the set of numbers divisible by 4 and 6 is
exactly the multiples of 12.

* We can prove that the set of numbers divisible by a and b is exactly
the multiples of Ilcm(a, b) using the same ideas.

* First prove that any multiple of Icm(a, b) is divisible by both a and b.
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* Then prove that if a number is not a multiple of lcm(a, b), then it will
have a remainder when divided by one of a or b.
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Try it out

 What is the set of numbers divisible by 14 and 217

/ g L5 L4 A: All multiples of 14

— B: All multiples of 21

C: All multiples of 28

Z) Llé Z D: All multiples of 42
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E: None of the above

 What is the set of numbers divisible by 2 and 107
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E: None of the above




Can we find the lecm(a, b) faster?

* Sometimes, the lem(a, b) = ab 506, T, 172 |5
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* Sometimes, the Iem(a, b) = a, where a > b.
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* Whena > b, lem(a, b) # b, because a positive multiple of a
cannot be smaller than a itself.

e Can we figure out when the other two cases are true?




Sometimes, the lcm(a, b) = max(a, b)

 When is this true? Let’s take a look at a couple of examples.
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* Note: it seems to always happen when the bigger number is a
multiple of the smaller.

* This makes sense because if the least common multiple is the
larger number, that means that the larger number is a multiple
of the smaller number.




[0 wtst / |east LomMon WM//‘ le
Sometimes, the Iem(a, b) = ab

e When is this true?

Respond in chat with hypotheses

Ilcm(a, b) ab
Ilcm(a,b)
5 10 10 1

2

4 6
3 7
4 9
9 15
v =
10 21
b3 21
15 21
12 22
8 27

24 12
21 21
36 36
135 45
210 210
294 42
315 105
264 132
216 216
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Do you notice anything about the right-most column and its relationship toa & b?




Greatest common divisors

* Let gcd(a, b) be the largest number dividing both a and b.
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* Important Theorem: For any two numbers a and b,
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Can we find the gcd(a, b) faster?

* If we can find the gcd, we can find the lcm, and vice versa, by
just dividing from the product.

e But now we have to ask if we can quickly find the gcd.
 One solution is to write out all the divisors of both.
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Smarter method (Euclid’s algorithm)

* Find the d = gcd(30, 69)
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Continuing gcd(30,69)

« ocd(30,69) = gcd(9,30)
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The Euclidean Algorithm

* To find the gcd(a, b), with b > a:

e Divide a into b, and let r be the remainder.
* If r = 0, then we’re done; a divides b and gcd(a, b) = a.
* Ifr # 0, then we replace (a, b) with (7, a) and repeat.
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Try it out

* Find the gcd(24,1234) = 5@0/ (/03 14 ) ﬁjoJ (L’L) /o)
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Try it out

* Find the least common multiple of 36 and 32227

A: 3222

B: 6444

C: 9333

D: 12888

E: None of the above




