Combinations Lecture 3a: 2022-01-24
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Let's bake a cake
The cake is a lie.

- We're going to have to measure ingredients.

Can we measure the right amount?

- Let's say we want to measure 5 tsp cinnamon.
- Can we do it with a 2 tsp spoon and a $1 \mathrm{tbsp}=3 \mathrm{tsp}$ spoon?

$$
\text { Easy: } 2 \text { tsp }+3 t_{p p}=5 t_{3 p}
$$

- What about $1 \mathrm{tbsp}=3 \mathrm{tsp}$ spoon and a third cup $=16 \mathrm{tsp}$ cup?

$$
\begin{array}{r}
\text { Yes in theory, Start by measuring } 2 \text { thing ans }=32 \text { tsp } \\
\text { Remove } 3 \text { tsp, } 9 \text { times }=-27 \text { tsp } \\
\text { Left with } 5 \text { tsp }
\end{array}
$$

- What about a 4 tsp spoon and a 1 cup $=48$ tsp cup?

$$
\text { No. Why? Even fdr } \quad \begin{aligned}
& \text { A: Yes } \\
& \text { B: No } \\
& \text { C: Yes, but only in theory } \\
& \text { E: None of the above }
\end{aligned}
$$

Let's play a game

- In some video games, can move normally, or can do a fixed-length "dash".
- When playing with a keyboard, a single button press may also go a specific distance.
- If the dash goes 9 ft , and walking goes 2 ft , can you go exactly 25 ft ?

- What if you speed up walking to go 3 ft ?

No. $C_{a n}$ only go multiples of 3

A: Yes
B: No
C: Yes, but only in theory
E: None of the above

Combinations

- Given two integers a and b, the sum of a multiple of a and a multiple of b (allowing negative multiples) is called a combination of a and b.
$a \cdot x+b \cdot y$, where x, y are integers.

$$
\text { Ex } a=11 \quad b=7 \quad 11 \cdot 2+7 \cdot 3=43 \begin{aligned}
& \text { is a combo } \\
& \text { of } 11 \text { and } 7
\end{aligned}
$$

- Given two integers a and b, what numbers n are combinations of a and b ?
- If n is a combination of a and b, how do we find multiples of a and b actually adding up to n ?

$$
43=11 x+7 y \text {. Find } x+y \text { as integers }
$$

Creating Unity

- Once you've figured out how to go 1 step, you could in theory figure out how to go any whole number of steps just by repeating the whole procedure.
- Example: $1 \mathrm{tbsp}=3 \mathrm{tsp}$ spoon and a third cup $=16 \mathrm{tsp}$ cup

$$
1 t_{s p}=16 \mathrm{tsp}-3+s p \times 5
$$

- Then we just repeat that any number of times, showing that we can make every number as a combination.

$$
\begin{aligned}
& \text { In make every number as a combination. } \\
& \begin{array}{rl|l}
5 t_{s p} & =5\left(16 t_{s p}-3 t_{s p} \times 5\right) & \text { Earlier: } \\
& =16 t_{s p} \times 5-\left(3 t_{s p} \times 5\right) \times 5 & 2 \times 16-3 \times 9 \\
& =16 t_{s p} \times 5-3 t_{s p} \times 25 & 32-27 \\
80-75
\end{array}
\end{aligned}
$$

Process for making smaller combos?

- Let's keep on making smaller combinations, and then use those as building blocks.
- Ex. Combinations of 35 and 100.
- Can repeatedly subtract 35 from 100 to get a smaller combo.

$$
100-35=65 \quad 65-35=30
$$

- Can rewrite as division with remainder.

$$
100 \div 35=2,30 \text { so } \quad 30=100-35 \times 2
$$

- Now we know how to make 30, so can use as a building block.

$$
35-30=5 \quad \text { s } \quad 5=35-(100-35 \times 2)=35 \times 3-100
$$

- But now we're stuck at 5 , since $30 \div 5=6$.

$$
30 \rightarrow 25 \rightarrow 20 \rightarrow 15 \rightarrow 10 \rightarrow 5 \rightarrow 0
$$

The Euclidean algorithm and combinations

- If we start with two whole numbers a and b, then the smallest combo we can make uses the following algorithm:
- Divide a into b, and let r be the remainder.
- If $r=0$, then we're done; a divides b and $\operatorname{gcd}(a, b)=a$.
- If $r \neq 0$, then we replace (a, b) with (r, a) and repeat.
- This is just the Euclidean algorithm, so the smallest combo we can make is precisely the greatest common divisor $\operatorname{gcd}(a, b)$.
- This means we know how to make any multiple of the $\operatorname{gcd}(a, b)$.

Notes Not the only way to moke 10

$$
6+4
$$

$$
\begin{aligned}
& \frac{E x}{} 6+4 \\
& 6 \div 4=1 r 2 \\
& 4 \div 2=2 \\
& 2=\operatorname{gcd}(6,4) \\
& \text { Goal } 10 \\
& 2=6-4 \\
& 5 \times 2=5 \times 6-5 \times 4 \\
& 10=5 \times 6-5 \times 4
\end{aligned}
$$

Other combinations?

- Can we make any positive numbers that are not multiples of $\operatorname{gcd}(a, b)$?

A: Yes
B: No
C: Yes, but only in theory
E : None of the above
proof. Let $d=\operatorname{gcd}(a, b)$
Then $a=m \cdot d \quad b=n \cdot d$, where m, n are integers
Any combination is the $\quad x \cdot a+y \cdot b, x, y$ integers

$$
=x \cdot m \cdot d+y \cdot n \cdot d
$$

$=(\underbrace{x \cdot m+y \cdot n}) \cdot d K$ a multiple of d K

- The set of combos sos of ${ }^{n} a,{ }^{n}, b^{6}$ is precisely the multiples of $\operatorname{gcd}(a, b)$

Try it out
-What is the set of combinations of 36 and 3222 ?

$$
\begin{array}{lr}
3222=36 \times 89+18 & 3 6 \longdiv { 3 2 2 2 } \\
36=18 \times 2 & \frac{288}{342} \\
\operatorname{gcd}(3222,36)=18 & \frac{324}{18}
\end{array}
$$

A: Multiples of 9

Try it out (recall)

- Find the least common multiple of 36 and 3222 ?

$$
\begin{gathered}
a \times b=\operatorname{gcd}(a, b) \times \operatorname{lcm}(a, b) \\
\operatorname{gcd}(3222,36)=18 \\
\operatorname{lcm}(36,3222)=\frac{36 \times 3222}{18}=\frac{36}{18} \times 3222 \\
=2 \times 3222=6444 \quad \begin{array}{l}
\text { A: 3222 } \\
\text { B: 6444 } \\
\text { C: 9333 } \\
\text { D: } 12888 \\
\text { E: None of the above }
\end{array}
\end{gathered}
$$

Try it out

- Find integers x, y such that $36 x+3222 y=9$

Recall: $\operatorname{gcd}(36,3222)=18$
So only multiples of 18 are possible. S. 9 is NOT possible.

What if we juesud b ?

$$
36 \times 89+3222 \neq 9
$$

A: $x=178, y=2$
B: $x=89, y=1$
C: $x=-89, y=1$
D: $x=-178, y=2$
E: None of the above

Try it out

- Find integers x, y such that $36 x+3222 y=18$

Recall.

$$
\begin{aligned}
3222 & =36 \cdot 89+18 \\
36 & =18 \cdot 2
\end{aligned}
$$

$$
\begin{gathered}
18=3222-36 \cdot 89 \\
y=1 \quad x=-89
\end{gathered}
$$

Try it out

- Find integers x, y such that $36 x+3222 y=36$

We know $18=3222-36 \times 89$

$$
\begin{array}{rl}
\Rightarrow 36=3222 & \times 2-36 \times 178 \\
y=2 & x=-178
\end{array}
$$

Aside: Another sol is
A: $x=178, y=2$
B: $x=89, y=1$
C: $x=-89, y=1$

$$
x=1, \quad y=0
$$

D: $x=-178, y=2$
E: None of the above

Try it out

- Find integers x, y such that $36 x+3222 y=45$

$$
\begin{aligned}
& \text { Recall } \operatorname{god}(36,3222)=18 \\
& 45 \div 18=2 r 9
\end{aligned}
$$

not a multiple of 18 , so not possible
A: $x=178, y=2$
B: $x=89, y=1$
C: $x=-89, y=1$
D: $x=-178, y=2$
E : None of the above

More complicated example
133,26

$$
\begin{aligned}
& 133 \div 26=5 r 3 \\
& 133=26 \cdot 5+3 \Rightarrow 3=133-26 \cdot 5 \\
& 26 \div 3=8 r 2 \\
& 26=3 \cdot 8+2 \Rightarrow 2=26-3 \cdot 8 \\
& 3 \div 2=1 r 1 \\
& 3=2 \cdot 1+1 \Rightarrow 1=3-2 \\
& 2 \div 1=2 \\
& z=1 \cdot 2 \\
& \operatorname{gcd}(133,26)=1 \\
& 1=3-2 \\
& 1=3-(26-3 \cdot 8) \\
& 1=3.9-26 \\
& 1=(133-26 \cdot 5) \cdot 9-26 \\
& 1=133 \cdot 9-26 \cdot 46 \\
& \rightarrow 3=133.27-16.138
\end{aligned}
$$

More complicated example 2022,133

More complicated example

$$
\begin{aligned}
& 2022,133 \\
& 2022=133 \cdot 15+27 \\
& 133=27 \cdot 4+25 \\
& 27=25 \cdot 1+2 \\
& 25=2 \cdot 12+1 \\
& 2=1 \cdot 2 \\
& \operatorname{gcd}(133,2022)=1
\end{aligned}
$$

$$
1 3 3 \longdiv { \frac { 1 5 } { \frac { 1 3 3 } { 6 9 2 } } } \times 2 7
$$

$$
1=25-2 \cdot 12
$$

$$
1=25-(27-25) \cdot 12
$$

$$
1=25 \cdot 13-27 \cdot 12
$$

$$
1=(133-27 \cdot 4) \cdot 13-27 \cdot 12
$$

$$
1=133 \cdot 13-27 \cdot 64
$$

$$
1=133 \cdot 13-(2022-133 \cdot 15) \cdot 64
$$

$$
1=133.973-2022.64
$$

