Prime numbers Lecture 3b: 2022-01-26
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

What is math?

Mike Peters's _Mother Goose and Grimm_ for the 23rd of June, 2014

Tom Blackwell:
https://www.flickr.com/photos/tjblackwell/6849008278

D: Who cares so long as it works?

Invention of addition and multiplication

- Addition = repeated counting

$$
3+4=7
$$

- Commutative property

$$
\begin{aligned}
& x+y=y+x \\
& x \times y=y \times x
\end{aligned}
$$

- Associative property

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \\
& x \times(y \times z)=(x \times y) \times z
\end{aligned}
$$

- Identity property

$$
\begin{aligned}
& x+0=x \\
& x \times 1=x
\end{aligned}
$$

Building the natural numbers

- We can get every whole number by repeatedly adding 1---i.e. using 1 as a building block under addition.

$$
\begin{array}{rll}
1+1 & =2 & \\
1+1+1 & =3 & (2+1)=3
\end{array} \quad 1,2,3,4,5,6,7,8, \ldots
$$

- What about for multiplication?

$$
\begin{aligned}
& 1,1,1,1, \ldots \text { Let's invent a new number } \\
& \alpha \text { that works as a }
\end{aligned}
$$

$$
2,4,8,16, \ldots
$$

$3,9,27,81, \ldots$

Multiplicative building blocks

$$
\begin{aligned}
& 2=2=4 \\
& 2=2
\end{aligned}
$$

- Let's just try to build just numbers from 1 to 100.
- Would the following work as multiplicative building blocks? If no, give an example of a number that fails?
- Numbers from 1 to $100:\{1,2,3, \ldots, 100\}$

$$
17=17 \cdot 1
$$ Yes, by construction.

$$
\begin{aligned}
& 100=100 \\
& 100=20.5
\end{aligned}
$$

- Numbers from 1 to $10:\{1,2,3,4,5,6,7,8,9,10\}$

$$
\text { No, Cannot build } 11,13,17,22
$$

- All odd numbers: $\{1,3,5,7,9,11, \ldots, 99\}$

No. Can't build even numbers like 2, 40 , etc.

- All odd numbers and the number $2:\{1,2,3,5,7,9,11, \ldots, 99\}$

Yes. If even, divide by 2 until get odd number. $42=2 \times 21$

- All numbers from 1 to 50 , and all even numbers after 50 :

$$
\{1,2,3,4,5, \ldots, 50,52,54,56,58, \ldots, 100\} \quad \text { No, } 53,59 \text { fail }
$$

Discovering the prime numbers

- Let's find the smallest possible set of building blocks for numbers from 1 to 20 . We'll start with all numbers in 1 to 20 and remove ones we don't need.

Smallest multiplicative building blocks

- 1 is a special case because it's not useful for building any number except itself; let's ignore it for now.
- In any set of integers from 2 to N, the smallest set of multiplicative building blocks seems to be only numbers that cannot be written as a product of two smaller numbers.
- Let's call a number composite if it is the product of two strictly smaller whole numbers.
- Let's call a number prime if it is not. Equivalently, a number is prime if it is divisible only by 1 and itself.
- By convention, we do NOT consider 1 prime, because it is a special case that's not useful as a building block.

Proof that the primes suffice

- We saw a pattern that suggested prime numbers are the smallest set of multiplicative building blocks. Let's prove it!
- Clearly, prime numbers have to be included our list of $2,3,5,7,8$ multiplicative building blocks, since you cannot build them.
- Notice that any number x not in our list must be built from smaller numbers in our list.
- Let c be the smallest composite number in our list. Then $c=a b$, where $a, b<c$.
- But a, b are either prime or are not in our list. If they are 2 is prime not in our list, then they must be built from smaller numbers in our list, which are all prime.
- Thus, c can be built from primes, so we can remove c.
- Repeating, we remove all composites from our list of blocks.

Prime factorization

- Every composite number can be written as a product of two smaller numbers.
- We can repeat this process until we write the composite number as a product of prime numbers.
Ex 。

$$
\begin{aligned}
120 & =2 \times 60=2 \times 2 \times 30=2 \times 2 \times 2 \times 15 \\
& =2 \times 2 \times 2 \times 3 \times 5 \\
& =2^{3} .3 .5
\end{aligned}
$$

Notice:

$$
\begin{aligned}
& =2 \cdot 3 \cdot 3 \\
120 & =10 \times 12=2 \times 5 \times 3 \times 4=2 \times 5 \times 3 \times 2 \times 2 \\
& =2 \times 2 \times 2 \times 3 \times 5 \\
& =2^{3} \cdot 3.5
\end{aligned}
$$

- Prime factorizations are unique. (proof later)

Try it out

- Find a prime factorization of the following:

$$
\begin{aligned}
\cdot 720 & =10 \cdot 72=2 \cdot 5 \cdot 2 \cdot 36 \\
& =2^{2} \cdot 5 \cdot 6^{2} \\
& =2^{2} \cdot 5 \cdot(2 \cdot 3)^{2}=2^{4} \cdot 3^{2} \cdot 5
\end{aligned}
$$

- 722

How do we know if a number is prime?
Ideas in chat, please.

- Test if it is divisible by every number smaller than it.

$$
\begin{array}{ll}
361 \div 2=180 r 1 & 361 \div 11=32 r 9 \\
361 \div 3=120 r 1 & 361 \div 12=30 r 1 \\
361 \div 4=90 r 1 & 361 \div 13=27 r 10 \\
361 \div 5=72 r 1 & 361 \div 14=25 r 11 \\
361 \div 6=60 r 1 & 361 \div 15=24 r 1 \\
361 \div 7=51 r 4 & 361 \div 17=21-4 \\
361 \div 8=45 r 1 & 361 \div 18=20 r 1 \\
361 \div 9=40 r 1 & 361 \div 19=19 \\
361 \div 10=36 r 1 &
\end{array}
$$

Any other ideas?

- Make a list of primes, and test only those numbers.

$$
\left.\begin{array}{rl}
2,3,5,7,11,13,17,19,23, \\
361 \div 2 & =180,1 \\
361 \div 3 & =120 r 1 \\
& i \\
3611 & \div 19
\end{array}\right)
$$

Sieve of Eratosthenes

- Method for computing list of primes by filtering out all multiples of a number.
- Repeatedly filter out all multiples of the smallest remaining number in a list.
- Start with filter out multiples of 2.
- Then multiples of 3 .
- Then multiples of 5 , because 4 is filtered, etc.

Eratosthenes of Cyrene 276 BCE - 194 BCE

Sieve of Eratosthenes in action

- How quickly do we get all the primes between 1 and 100 ?

Why is the sieve so fast?

$$
2 \rightarrow 4 \quad 7 \rightarrow 49
$$

$$
3 \rightarrow 9
$$

- For each prime, what is the first number that is filtered out?

```
Answers in chat, please.
```


Properties of the sieve

- When any number is filtered out, obviously all of its multiples are also filtered out.

$$
\begin{aligned}
& 4 \text { is filtered out for the prime } 2 \\
& \text { But then } 4 n \text { arc ale filtanc because } 4 n=2 \cdot(2 n)
\end{aligned}
$$

- The first multiple of a prime p to be filtered out is always p^{2} because any smaller multiple $p \cdot n$ (where $n<p$) would have been filtered out when was filtered out.

$$
\text { Ex. } \quad 11 x_{2}^{2} \quad \begin{array}{ccccccccc}
33 & 44 & 55 & 66 & 77 & 88 & 95 & 121
\end{array}
$$

- Therefore, to figure out if a number n is prime, you only have to run the Sieve of Eratosthenes up to a prime $p \leq \sqrt{n}$.
- If n is not prime, then it must be divisible by a prime $p \leq \sqrt{n}$.

$$
n=a b \text {, so either } a \leq \sqrt{n} \text { or } b \leq \sqrt{n}
$$

Sieve of Eratosthenes on a restricted set
-What are the primes between 210 and 220 ?
Primes: $z, 3, \quad x, 8, K, 3) \quad \begin{aligned} & \frac{17}{119} \\ & \frac{17}{289}\end{aligned}$
/

Try it out

- Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

A: Prime

- Classify the following numbers:
- 1 neither
- $87 \quad 87 \div 3=29$
- 97 prime
- 359 prime. $2,3,5,7,11,13,17, \leftarrow$ check cook of these
- 401 prime chook through 19
- $623 \quad 7 \sqrt{\frac{89}{623}}$ composite

