Prime patterns Lecture 3c: 2022-01-26

MAT A02 – Winter 2022 – UTSC

Prof. Yun William Yu

Patterns in sets of numbers

- Natural numbers
- Negative numbers
- Even numbers
- Multiples of 3
- Odd numbers

More complicated sets

- All positive integers less than or equal to 12
- All even numbers between 19 and 31
- Perfect squares
- Numbers that are divisible by either 2 or 3

Try it out

- Find a simple formula for the following patterns
- 2, 5, 10, 17, 26, 37, 50, ...

• 1, 10, 100, 1000, 10000, 100000, ...

• 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

A:
$$a_n = 10^{n-1}$$

B: $a_n = 2n + 3$
C: $a_n = n^2 + 1$
D: $a_n = \sqrt{n} + 1$
E: None of the above

What about the primes?

2	3	5	7	11	13	17	19	23	29	
31	37	41	43	47	53	59	61	67	71	
73	79	83	89	97	101	103	107	109	113	
127	131	137	139	149	151	157	163	167	173	
179	181	191	193	197	199	211	223	227	229	
233	239	241	251	257	263	269	271	277	281	
283	293	307	311	313	317	331	337	347	349	
353	359	367	373	379	383	389	397	401	409	
419	421	431	433	439	443	449	457	461	463	
467	479	487	491	499	503	509	521	523	541	
547	557	563	569	571	577	587	593	599	601	
607	613	617	619	631	641	643	647	653	659	
661	673	677	683	691	701	709	719	727	733	
739	743	751	757	761	769	773	787	797	809	
811	821	823	827	829	839	853	857	859	863	
877	881	883	887	907	911	919	929	937	941	
947	953	967	971	977	983	991	997	1009	1013	
1019	1021	1031	1033	1039	1049	1051	1061	1063	1069	

A few questions about primes

- How many prime numbers exist?
- If p is a prime, what is the next prime q, where q > p?
- Sometimes, when p is a prime, all of the numbers immediately following it are not. This is called a prime desert. How often does this happen?
- Sometimes, when p is a prime, so is p + 2. This is called a twin prime. How often does this happen?
- If I pick a random large number between *n* and *m*, what is the chance that it'll be a prime?

How many prime numbers are there?

A: Infinity! B: 281213943920211239 C: A lot, but not infinity D: Primes don't exist E: None of the above

Direct proofs of infinity

- Ways of proving infinitely many items.
- Proof there are infinite natural numbers:
 - One way is to show that there is an infinite sequence without repetitions which is all natural numbers.

• Infinite even numbers:

 This only works because we can figure out a simple formula for these sequences, but we don't know any formula even for a subset of the prime numbers.

Proof by contradiction

• Example:

- 1. Mr. Body was murdered in the Billiards Room with a candlestick.
- 2. Everyone but Colonel Mustard was in the Dining Room when the murder happened.
- 3. Suppose Colonel Mustard was not the killer.
- Then no one murdered Mr. Body.
- Contradiction!
- Therefore one of the facts must be wrong.
- If we are sure of the first two facts, then the third one must be wrong.
- If the third fact is wrong, then Colonel Mustard must be the killer.

Proof by contradiction for infinite evens

Proof of infinite primes

History of operations

- Negative numbers were invented circa 202 BCE 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- Direct division was invented around 1500 BCE by the Egyptians.
- Modern long division was invented by Henry Briggs at Oxford, who lived from 1560-1630 CE.
- Sieve of Eratosthenes was known around 276 BCE – 194 BCE.

When did we prove infinitely many prime numbers exist?

A: Before 1000 BCE B: 1000 BCE to 1000 CE C: 1000 CE to 1500 CE D: 1500 CE to 1800 CE E: After 1800 CE

Euclid's Elements, a textbook written by an ancient Greek mathematician around 300 BCE in Alexandria, Ptolemaic Egypt.

Prime deserts

- Claim: no matter how large a value of *n*, you can find a sequence of *n* numbers in a row such that none of them are prime.
- Factorial: $m! = 1 \times 2 \times 3 \times \cdots \times m$
- Sol: (n + 1)! + 2 to (n + 1)! + (n + 1)
- Ex. For n = 42, consider 43!

Mango Sensation The Dessert Kitchen, 73 Harbord St., Toronto

Other known facts about prime numbers

Bertrand's postulate / Bertrand-Chebyshev theorem (proved 1852): For any integer n > 3, there always exists at least one prime number p between n and 2n.

• Prime Number Theorem [Hadamard, 1895; Poussin, 1896]: There are approximately $\frac{n}{\ln n}$ primes between 2 and n.

Do primes necessarily get further apart?

- Answer: No.
- Yitang Zhang proved in 2013 that there are infinitely many pairs of prime numbers that differ by 70 million or less.
- Current best proof is that there are infinitely many pairs of prime numbers that differ by 246 or less.
- Twin prime conjecture: there are infinitely many pairs of prime numbers that differ by exactly 2.

Professor Yitang Zhang, UNH (now UCSB)

Examples: 3,5 5,7 11,13 17,19 ... 2996863034895 $\cdot 2^{1290000} \pm 1$