Fundamental Theorem of Arithmetic Lecture 4b: 2022-02-02

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Multiplicative building blocks

- What kind of building blocks are the primes?

A: Legos, separable and discrete.

B: Paint colors, once mixed, inseparable.

Division of Lego structures

- Suppose I have this Lego structure I built. If I divide it into two substructures, can I separate the

```
A: Yes
B: No
C: Maybe
E: None of the above
``` yellow part?
- What about the gray part?
-What about the red part?
- Individual Lego pieces can't be split across the two halves, but combinations of Lego pieces can.

\section*{What is a prime?}
- A prime number \(p\) is divisible by only 1 and \(p\).
- The set of prime numbers is the smallest set of multiplicative building blocks needed to generate all positive integers \(>1\).

\section*{Another consequence of primes}
- When is a product \(a b\) of two numbers \(a\) and \(b\) even?
- When is a product \(a b\) of two numbers \(a\) and \(b\) divisible by 3 ?
- When is a product \(a b\) of two numbers \(a\) and \(b\) divisible by 6?
```

A: When }a\mathrm{ is even
B: When }b\mathrm{ is even
C:When both }a\mathrm{ and b}\mathrm{ are even
D: When }a\mathrm{ or }b\mathrm{ are even
E: None of the above

```

> A: When \(a\) is divisible by 3
> B: When \(b\) is divisible by 3
> C: When 3 divides by \(a\) and \(b\)
> D: When 3 divides either \(a\) or \(b\)
> E: None of the above
```

A: When }a\mathrm{ is divisible by }
B: When }b\mathrm{ is divisible by }
C: When }6\mathrm{ divides by }a\mathrm{ and }
D: When }6\mathrm{ divides either }a\mathrm{ or }
E}\mathrm{ : None of the above

```

\section*{Analogy to legos - punchline}
- A prime is a basic building block that you cannot separate further, like this \(2 \times 4\) yellow building block.
- A composite number, like this \(2 \times 4\) red structure, can still be used as a building block, but when you divide up the structure, you can separate it.

\section*{Divisibility by 3: direct checking}
- How can we convince ourselves that in a product \(a b\) that is divisible by 3 , at least one of \(a\) or \(b\) is divisible by 3 ?
- One way is to check every number divisible by 3 , but then we have to check every combination of divisors.

\section*{Divisibility by 3 : checking opposite}
- Another easier way is to check every product of \(a\) and \(b\) where both are NOT divisible. Then we just have to check divisibility by 3 of \(a b\) each time.

\section*{Proof by Euclidean algorithm}

\section*{Conclusion to proof}
- Assume \(a b\) is divisible by 3 .
- Case 1: \(a\) is not divisible by 3 . Then \(b\) is divisible by 3 .
- Case 2: \(a\) is divisible by 3.
- Therefore, if \(a b\) is divisible by 3 , then at least one of \(a\) or \(b\) is divisible by 3.
- Does the argument hold if we replace 3 with 5 ?
- What about if we replace 3 with 6 ?
- What goes wrong when we replace 3 with 6 ?
```

A: Yes
B: No
C: Maybe???
E: None of the above

```

\section*{Primes and factoring}
- If a prime number \(\boldsymbol{p}\) divides a product of numbers, then it must divide one of the factors.
- Try it out:
- 1089746112 is divisible by 91 and 97 .
- \(1089746112=436597 \times 2496\)
```

A: At least one of 436597 or 2496 is divisible by 91
B: At least one of 436597 or 2496 is divisible by 97
C: Both A and B are true
D: Neither A nor B is true
E: None of the above

```

\section*{Fundamental Theorem of Arithmetic}
- Any number can be written as a product of primes in one and only one way.
- General proof uses same logic, that if a prime appears in one decomposition, it has to appear to all decompositions.

\section*{Why should we care?}
- Writing natural numbers in decimal notation builds up numbers effectively as a combination of summation and multiplication, where the number 10 is special.
- With computers, you might write it in binary instead, where we use the base of 2 instead of 10 .
- The Fundamental Theorem of Arithmetic gives a different way of writing numbers, based on just multiplication, and without choosing a special number as a base.

\section*{Disadvantages to factorization}
- What are some disadvantages to writing in factored form?

> Respond in chat.
- Harder to know when a number is bigger.
- Converting to factored form can be very difficult, whereas converting from factored form to decimal or binary is easy.
- We have a lot more building blocks that we need to work with (i.e. all primes), rather than just using powers of 10 and \(0,1,2\), \(3,4,5,6,7,8,9\).```

