Using
 Factorizations Lecture 4c: 2022-02-02

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Multiplication

- Prime factorizations are intrinsically tied to multiplication, and require just adding exponents.

$$
\begin{aligned}
33,880 & =2^{3} \cdot 5 \cdot 7 \cdot 11^{2} \\
31,350 & =2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 19 \\
\Rightarrow 33,880 \times 31,350 & =\left(2^{3} \cdot 5 \cdot 7 \cdot 11^{2}\right)\left(2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 19\right) \\
& =\underbrace{2^{4} \cdot 5^{3} \cdot 7 \cdot 11^{3} \cdot 19}_{\text {prime factorization }}
\end{aligned}
$$

General rule for multiplication

- Let

$$
\begin{aligned}
& n=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \ldots \\
& m=2^{b_{2}} \cdot 3^{b_{3}} \cdot 5^{b_{5}} \cdot 7^{b_{7}} \ldots
\end{aligned}
$$

- Then

$$
\begin{aligned}
& n m=2^{a_{2}+b_{2}} \cdot 3^{a_{3}+b_{3}} \cdot 5^{a_{5}+b_{5}} \cdot 7^{a_{7}+b_{7}} \ldots \\
& 33,880=\frac{2^{3} \cdot 5 \cdot 7 \cdot 11^{2}}{}=2^{3} \cdot 3^{0} \cdot 5^{1} \cdot 7^{1} \cdot 11^{2} \cdot 13^{0} \cdot 17^{0} \cdot 19^{0} \\
& 31,350=\frac{2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 19}{1}=2^{1} \cdot 3^{1} \cdot 5^{2} \cdot 7^{0} \cdot 11^{1} \cdot 13^{0} \cdot 17^{0} \cdot 19^{1} \\
& \text { product }=
\end{aligned}
$$

Ex.

Try it out

$$
\begin{gathered}
120=2^{3} \cdot 3 \cdot 5 \\
132=2^{2} \cdot 3 \cdot 11 \\
189=3^{3} \cdot 7
\end{gathered}
$$

-What is the prime factorization of the following?
$\cdot 120 \cdot 132=2^{3} \cdot 3 \cdot 5 \cdot 2^{2} \cdot 3 \cdot 11=2^{2+3} \cdot 3^{1+1} \cdot 5 \cdot 11$
$\cdot 132 \cdot 189=\left(2^{2} \cdot 3 \cdot 11\right)\left(3^{3} \cdot 7\right)=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$

$$
\cdot 120 \cdot 189=2^{2} \cdot 3^{4} \cdot 7 \cdot 11 \cdot \mathrm{~A}
$$

$$
=2^{3} \cdot 3^{4} \cdot 5 \cdot 7
$$

A: $2^{2} \cdot 3^{4} \cdot 7 \cdot 11$
B: $2^{5} \cdot 3^{2} \cdot 5 \cdot 11$
C: $2^{3} \cdot 3^{4} \cdot 5 \cdot 7$
D: $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11$
E : None of the above

$$
2^{3} 3^{1+3} \cdot 5 \cdot 7 \quad 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 3 \cdot 3 \cdot 3 \cdot 7
$$

Division via Factorization

- Division is opposite of multiplication.
- Can use power rules to show division of prime factorizations is the same as subtracting exponents.
- Let

$$
\begin{aligned}
& n=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \ldots \\
& m=2^{b_{2}} \cdot 3^{b_{3}} \cdot 5^{b_{5}} \cdot 7^{b_{7}} \ldots
\end{aligned}
$$

- Then

$$
\frac{n}{m}=2^{a_{2}-b_{2}} \cdot 3^{a_{3}-b_{3}} \cdot 5^{a_{5}-b_{5}} \cdot 7^{a_{7}-b_{7}} \ldots
$$

- And n is divisible by m precisely when $a_{2} \geq b_{2}, a_{3} \geq b_{3}, \ldots$

Example

$$
\left.\begin{array}{rl}
\frac{33,880}{31,350} & =\frac{2^{3} \cdot 5 \cdot 7 \cdot 11^{2}}{2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 19}=\frac{2^{2} \cdot 7 \cdot 11}{3 \cdot 5 \cdot 19} \\
& =2^{3-1} 3^{-1} 5^{1-2} \cdot 7 \cdot 11^{2-1} \cdot 19^{-1} \\
& =2^{2} 3^{-1} 5^{-1} 7 \cdot 11 \cdot 19^{-1}
\end{array}\right\}
$$

Try it out

- For the following pairs of numbers, say if n is divisible by m.
- $n=2^{3} \cdot 3 \cdot 7^{2} \cdot 13, m=2^{2} \cdot 3 \cdot 7$

$$
\frac{n}{m}=\frac{2^{3} \cdot 3 \cdot 7^{2} \cdot 13}{2^{2} \cdot 3 \cdot 7}=2 \cdot 7 \cdot 13
$$

> A: Yes

B: No
E : None of the above

- $n=2^{4} \cdot 11 \cdot 19, m=2^{2} \cdot 3 \cdot 11$

$$
\frac{n}{m}=\frac{2^{4} \cdot 11 \cdot 19}{2^{3} \cdot 3 \cdot 11}=\frac{2 \cdot 19}{3} \quad N_{0}
$$

$$
\frac{12}{9}=\frac{2.2 .3}{3.3}=\frac{4}{3}
$$

- $n=2^{2} \cdot 3 \cdot 7^{2} \cdot 13, m=\underbrace{3} \cdot 3 \cdot 7$

$$
3>2 \text { in porars of } 2 \text {. }
$$

Counting divisors

- How many numbers divide 24 ?

$$
\begin{array}{ll}
24 \div 1=24 & \checkmark \\
24 \div 2=12 & \checkmark \\
24 \div 3=8 & \checkmark \\
24 \div 10=2 r 4 \\
24 \div 4=6 & \checkmark \\
24 \div 5=4 \times 4 & 24 \div 11=2 r 2 \\
24 \div 6=4 & 24 \div 13=1 r 11 \\
24 \div 7=3 r 3 & 24 \div 14=1 r 10 \\
24 \div 8=3 \checkmark & 24 \div 24=1 \checkmark
\end{array}
$$

A: 4
$\mathrm{~B}: 6$
$\mathrm{C}: 8$
$\mathrm{D}: 10$
$\mathrm{E}:$ None of the above

- Counting up is slow and time-consuming.

Counting divisors using factorization

- How many divisors does 24 have?

$$
\begin{aligned}
& 24=2 \cdot 12 \\
& =2.2 .6 \\
& =2 \cdot 2 \cdot 2 \cdot 3 \\
& =2^{3} \cdot 3 \\
& 2^{0} \cdot 3^{0}=1 \quad 2^{0} \cdot 3^{1}=3 \\
& 2^{\prime} \cdot 3^{0}=2 \quad 2^{\prime} \cdot 3^{\prime}=6 \\
& 2^{2} \cdot 3^{0}=4 \quad 2^{2} \cdot 3^{1}=12 \\
& 2^{3} \cdot 30=8 \quad 2^{3} \cdot 3^{1}=24 \\
& \text { All divisors mut be of } \\
& \text { the form } 2^{a} 3^{b} \text {, } \\
& a \leq 3 \\
& b \leq 1 \\
& \Rightarrow \quad a \in\{0,1,2,3\} \leftarrow 4 \\
& b \in\{0,1\} \longleftarrow 2 \\
& 4 \times 2=8 \\
& \text { divisors }
\end{aligned}
$$

Another example

- How many numbers divide 756 ?
- Step 1: factor 756

$$
\begin{aligned}
& \text { 1: factor } 756 \\
& \begin{aligned}
756 & =2 \cdot 378=2^{2} \cdot 189=2^{2} \cdot 3 \cdot 63=2^{2} \cdot 3^{2} \cdot 21 \\
& =2^{2} \cdot 3^{3} \cdot 7^{1}
\end{aligned}
\end{aligned}
$$

- Step 2: multiply together $1+$ powers

$$
(2+1)(3+1)(1+1)=3 \cdot 4 \cdot 2=24 \text { divisors }
$$

Ex $\quad 2^{\prime} \cdot 3^{2} \cdot 7=18 \cdot 7=70+56=126$ is a divisor

Try it out

- How many divisors does 384 have?

$$
384=2 \cdot 192=\underbrace{2 \cdot 2}_{2^{2}} \cdot 96
$$

$$
=2^{2} \cdot 96=2^{2} \cdot 2 \cdot 48
$$

$$
=2^{3} \cdot 48=2^{3} \cdot 2 \cdot 24
$$

$$
\begin{aligned}
& =2^{4} \cdot 24 \\
& =2^{5} \cdot 12 \\
& =2^{6} \cdot 6
\end{aligned}
$$

$$
(7+1)(1+1)=8 \cdot 2=16
$$

Say d is a divisor:

2 numbers $\{0,1\} \leq 1$
ged via factorization

- Suppose d divides n. Then prime factorization of d must have exponents less than or equal to prime factorization of n.
- If d divides both n and m, then all of the exponents must be less than or equal to those in both n and m.
- The greatest common divisor thus has exponents exactly equal to the smaller of the exponents in n and m.

$$
\begin{aligned}
& \text { the smaller of the exponents in } n \text { and } m . \\
& \begin{array}{l}
54=24 \cdot 2+6 \\
24=6 \cdot 4
\end{array} \\
& 54=2^{3} \cdot 3^{\prime} \cdot 3^{3} \quad \operatorname{gcd}(24,6) \\
& =6
\end{aligned} \quad \begin{array}{r}
21=3 \cdot 7=2^{0} \cdot 3^{\prime} \cdot 7^{\prime} \\
\operatorname{gcd}(24,54)=2^{\prime} \cdot 3^{\prime}=6 \quad \begin{array}{r}
14=2^{\prime} \cdot 3^{0} \cdot 7^{\prime} \\
\operatorname{gcl}(21,14)=2^{0} \cdot 3^{0} \cdot 7^{\prime} \\
=7^{\prime}
\end{array}
\end{array}
$$

lcm via factorization

- Suppose m is a multiple of a. Then prime factorization of m must have exponents greater than or equal to prime factorization of a.
- If m is a multiple of both a and b, then all of the exponents must be greater than or equal to those in both a and b.
- The least common multiple thus has exponents exactly equal to the larger of the exponents in n and m.

$$
\left.\begin{array}{lllllll}
24 & =2^{3} \cdot 3 & 24 & 48 & +2 & 96 & 120 \\
54=2 \cdot 3^{3} & & 168 & 192 & 216 \\
& & & & 162
\end{array}\right]
$$

Showing $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b$

- The Icm gets all the smaller exponents, and the gcd gets all the larger exponents, so multiplied together, you get all of the original exponents in a and b.

