Using
 Factorizations Lecture 4c: 2022-02-02

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Multiplication

- Prime factorizations are intrinsically tied to multiplication, and require just adding exponents.

General rule for multiplication

- Let

$$
\begin{aligned}
& n=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \cdots \\
& m=2^{b_{2}} \cdot 3^{b_{3}} \cdot 5^{b_{5}} \cdot 7^{b_{7}} \cdots
\end{aligned}
$$

- Then

$$
n m=2^{a_{2}+b_{2}} \cdot 3^{a_{3}+b_{3}} \cdot 5^{a_{5}+b_{5}} \cdot 7^{a_{7}+b_{7}} \ldots
$$

Try it out

$$
\begin{gathered}
120=2^{3} \cdot 3 \cdot 5 \\
132=2^{2} \cdot 3 \cdot 11 \\
189=3^{3} \cdot 7
\end{gathered}
$$

-What is the prime factorization of the following?

- $120 \cdot 132$
- $132 \cdot 189$
- $120 \cdot 189$

$$
\begin{aligned}
& \text { A: } 2^{2} \cdot 3^{4} \cdot 7 \cdot 11 \\
& \text { B: } 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \\
& \text { C: } 2^{3} \cdot 3^{4} \cdot 5 \cdot 7 \\
& \text { D: } 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \\
& \text { E: None of the above }
\end{aligned}
$$

Division via Factorization

- Division is opposite of multiplication.
- Can use power rules to show division of prime factorizations is the same as subtracting exponents.
- Let

$$
\begin{aligned}
& n=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \ldots \\
& m=2^{b_{2}} \cdot 3^{b_{3}} \cdot 5^{b_{5}} \cdot 7^{b_{7}} \ldots
\end{aligned}
$$

- Then

$$
\frac{n}{m}=2^{a_{2}-b_{2}} \cdot 3^{a_{3}-b_{3}} \cdot 5^{a_{5}-b_{5}} \cdot 7^{a_{7}-b_{7}} \ldots
$$

- And n is divisible by m precisely when $a_{2} \geq b_{2}, a_{3} \geq b_{3}, \ldots$

Example

Try it out

- For the following pairs of numbers, say if n is divisible by m.
- $n=2^{3} \cdot 3 \cdot 7^{2} \cdot 13, m=2^{2} \cdot 3 \cdot 7$

> A: Yes

B: No
E : None of the above

- $n=2^{4} \cdot 11 \cdot 19, m=2^{2} \cdot 3 \cdot 11$
- $n=2^{2} \cdot 3 \cdot 7^{2} \cdot 13, m=2^{3} \cdot 3 \cdot 7$

Counting divisors

- How many numbers divide 24 ?
- Counting up is slow and time-consuming.

Counting divisors using factorization

- How many divisors does 24 have?

Another example

- How many numbers divide 756 ?
- Step 1: factor 756
- Step 2: multiply together 1+powers

Try it out

- How many divisors does 384 have?

$$
\begin{aligned}
& \text { A: } 4 \\
& \text { B: } 8 \\
& \text { C: } 12 \\
& \text { D: } 16 \\
& \text { E: None of the above }
\end{aligned}
$$

gcd via factorization

- Suppose d divides n. Then prime factorization of d must have exponents less than or equal to prime factorization of n.
- If d divides both n and m, then all of the exponents must be less than or equal to those in both n and m.
- The greatest common divisor thus has exponents exactly equal to the smaller of the exponents in n and m.

Icm via factorization

- Suppose m is a multiple of a. Then prime factorization of m must have exponents greater than or equal to prime factorization of a.
- If m is a multiple of both a and b, then all of the exponents must be greater than or equal to those in both a and b.
- The least common multiple thus has exponents exactly equal to the larger of the exponents in n and m.

Showing $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b$

- The Icm gets all the smaller exponents, and the gcd gets all the larger exponents, so multiplied together, you get all of the original exponents in a and b.

Try it out

- What is the greatest common divisor of 3072 and 896 ?
- Step 1: what is the prime factorization of 3072 ?
- Step 2: what is the prime factorization of 896 ?

```
A: 28.5
B: 27}\cdot
C: 2 }\mp@subsup{2}{}{10}\cdot
D: 25}\cdot\mp@subsup{3}{}{5
E: None of the above
```

- Step 3: get the smallest of each exponent.

$$
\begin{aligned}
& \text { A: } 2^{5}=32 \\
& \text { B: } 2^{7}=128 \\
& \text { C: } 2^{7} \cdot 3 \cdot 5=1920 \\
& \text { D: } 2^{10} \cdot 3 \cdot 7=21504 \\
& \text { E: None of the above }
\end{aligned}
$$

Try it out

- How many positive integers divide both 3072 and 896 ? Hint: if an integer divides both, then it must divide their gcd.

```
A:4
B: }
C: }1
D: 16
E: None of the above
```


Rational numbers

- Any number that can expressed as a fraction where the numerator and denominator are both whole numbers is called "rational".
- Otherwise the number is called "irrational".
- Are there any irrational numbers?

$\sqrt{2}$ is irrational

- Claim: there is no fraction $\frac{n}{m}$ such that $\left(\frac{n}{m}\right)^{2}=2$. (n, m integers)

Math history

- Negative numbers were invented circa 202 BCE - 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- Direct division was invented around 1500 BCE by the Egyptians.
- Sieve of Eratosthenes was known around 276 BCE - 194 BCE.
- Infinitude of primes was written down in Euclid's Elements from 300 BCE in Alexandria, Egypt.

History of irrational numbers

- When did we prove that $\sqrt{2}$ is irrational, that it could not be written as a fraction of whole numbers?

```
A: Before 1000 BCE
B: }1000\mathrm{ BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE
```


Hippasus of Metapontum, 530-450 BCE
One of the Pythagoreans, sometimes credited with the discovery of irrational numbers. (the Pythagoreans knew of irrational numbers, but who exactly proved it is a bit unclear)

