LCM and GCD via factorization

 Lecture 5a: 2022-02-07MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Greatest common divisor

- Suppose d divides n. Then prime factorization of d must have exponents less than or equal to prime factorization of n.
- If d divides both n and m, then all of the exponents must be less than or equal to those in both n and m.
- The greatest common divisor thus has exponents exactly equal to the smaller of the exponents in n and m.

$$
\begin{array}{ll}
& 54=24 \cdot 2+6 \\
24 & =2^{3} \cdot 3
\end{array} \quad 24 \cdot 6 \cdot 4 \quad \operatorname{gcd}(24,54)=6
$$

Least common multiple

- Suppose m is a multiple of a. Then prime factorization of m must have exponents greater than or equal to prime factorization of a.
- If m is a multiple of both a and b, then all of the exponents must be greater than or equal to those in both a and b.
- The least common multiple thus has exponents exactly equal to the larger of the exponents in n and

$$
\begin{aligned}
& 24=2^{3} \cdot 3 \\
& 54=2^{3} \cdot 3^{3}
\end{aligned}
$$

$$
24,48,72,56,120,144,
$$

$$
168,192,2 / 6
$$

$\operatorname{lcm}(24,54)=2^{3} \cdot 3^{3}$
$54,108,162,216$

$$
=8.27=216
$$

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b
$$

- The lcm gets all the smaller exponents, and the god gets all the larger exponents, so multiplied together, you get all of the original exponents in a and b.

$$
\begin{aligned}
& a=2^{c_{2}} 3^{c_{3}} 5^{c_{5}} 7^{c} 11 \\
& b=2^{d_{2}} 3^{d_{3}} 5^{d_{5}} 7^{d_{7}} 11 \\
& d_{11}
\end{aligned} \ldots .
$$

Try it out

- What is the greatest common divisor of 3072 and 896?
- Step 1: what is the prime factorization of 3072?

$$
3072=1024 \cdot 3=2^{10} \cdot 3
$$

- Step 2: what is the prime

$$
\mathrm{A}: 2^{5}=32
$$ factorization of 896 ?

$$
896=7 \cdot 128=2^{7} \cdot 7
$$

$$
\begin{aligned}
& \text { A: } 2^{8} \cdot 5 \\
& \text { B: } 2^{7} \cdot 7 \\
& \text { C: } 2^{10} \cdot 3 \\
& \text { D: } 2^{5} \cdot 3^{5} \\
& \text { E: None of the above }
\end{aligned}
$$

$$
\mathrm{B}: 2^{7}=128
$$

$$
\mathrm{C}: 2^{7} \cdot 3 \cdot 5=1920
$$

$$
\text { D: } 2^{10} \cdot 3 \cdot 7=21504
$$

E: None of the above

- Step 3: get the smallest of each exponent.

$$
\operatorname{god}(896,3072)=2^{7} \cdot 8^{9} \cdot 7^{8}=128
$$

