Relative primes Lecture 5b: 2022-02-07

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Recall combinations

- Given two integers m and n, the sum of a multiple of m and a multiple of n (allowing negative multiples) is called a combination of m and n.
$m \cdot x+n \cdot y$, where x, y are integers
- The set of combinations is precisely the multiples of $\operatorname{gcd}(m, n)$.
- You can use the Euclidean algorithm to make $\operatorname{gcd}(m, n)$, and therefore any multiple.

Relative primes

- If $\operatorname{gcd}(m, n)=1$, then you can make any number as a combination of m and n, so we give this a special name, and call them relatively prime.
-Why?

Equivalent criteria for relative primes

- $\operatorname{gcd}(m, n)=1$
- The only positive integer dividing both m and n is 1 .
- No prime number divides both m and n.
- The prime factorizations of m and n have no primes in common.
- $\operatorname{lcm}(m, n)=m n$
- Any number divisible by both m and n is a multiple of $m n$.
- The number 1 is a combination of m and n.
- Every whole number is a combination of m and n

Example

- $\operatorname{gcd}(m, n)=1$
- The only positive integer dividing both m and n is 1 .
- No prime number divides both m and n.
- The prime factorizations of m and n have no primes in common.
- $\operatorname{lcm}(m, n)=m n$
- Any number divisible by both m and n is a multiple of $m n$.
- The number 1 is a combination of m and n.
- Every whole number is a combination of m and n

Try it out

- Are the following pairs of numbers relative prime?
- 49, 77

A: Yes
B: No
E: None of the above

- 50,77
- 51, 77
- 10231820, 4381292812834

Surprising result

- If 1 is a combination of m and n, then 1 is a combination of m^{a} and n^{b}, for any integers a, b.

The Euler ϕ-function

- Called Euler Phi function, or Euler's totient function.
- One of the central activity of mathematicians is counting (e.g. counting divisors).
- $\phi(n)$ counts the number of integers from 0 to $n-1$ that are relatively prime to n.

Modified sieve of Eratosthenes

- Modified sieve where we cross out only primes found in the prime factorization.

Try it out

- $\phi(18)$
- $\phi(29)$

$$
\begin{aligned}
& \text { A: } 6 \\
& \text { B: } 14 \\
& \text { C: } 28 \\
& \text { D: } 40 \\
& \text { E: None of the above }
\end{aligned}
$$

Quicker strategy

- Each time we remove the multiples of a prime p, we are removing $\frac{1}{p}$ of the remaining numbers.
- So if a prime factorization is $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where each $a_{i}>0$, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Try it out

- $\phi(1000)$
- ϕ (3993)
A: 100
B: 400
C: 1210
D: 2420
E: None of the above

