Irrational and
 imaginary numbers Lecture 5c: 2022-02-09
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

What do mathematicians do?

- Invent new ways of counting/measuring things
- Addition
- Multiplication
- Exponentiation
- Figure out how to reverse operations
- Subtraction
- Division
- Roots
- Invent new numbers to allow reversing stuff
- Negative numbers
- Fractions
- ???

> Do we need a number type for reversing exponentiation?
> A: Yes
> B: No
> C: Yes, in fact more than 1
> E: None of the above

Rational numbers \approx fractions

- Any number that can expressed as a fraction where the numerator and denominator are both whole numbers is called "rational".
- Otherwise the number is called "irrational".

What does it mean to "square"

2D grid and squaring

$\sqrt{2}$ is irrational

- Claim: there is no fraction $\frac{n}{m}$ such that $\left(\frac{n}{m}\right)^{2}=2 .(n$, m integers)

Math history

- Negative numbers were invented circa 202 BCE - 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- Direct division was invented around 1500 BCE by the Egyptians.
- Sieve of Eratosthenes was known around 276 BCE - 194 BCE.
- Infinitude of primes was written down in Euclid's Elements from 300 BCE in Alexandria, Egypt.

${ }^{2}$	I	,	II
som		\perp	III
	II		IIII
\cdots		$=$	II

History of irrational numbers

- When did we prove that $\sqrt{2}$ is irrational, that it could not be written as a fraction of whole numbers?

A: Before 1000 BCE
B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE

Origins of a few irrational numbers

- Many roots of numbers:
- Every square root \sqrt{n}, where n is not a perfect square, i.e. $n \neq m^{2}$, for a natural number m.
- Other parts of geometry, such as the ratio of a circle's circumference to its diameter: $\pi \approx 3.14159265358979323846264338327950$...
- Some come from calculus and limits: Euler's number

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots \approx 2.71828 \ldots
$$

When was π proved irrational?

A: Before 1000 BCE
B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE

Real numbers

- Any number that can be written as an infinite decimal on the number line is real.
- In order to fully understand and invent real numbers, we would need a better understanding of infinity, limits, and calculus.
- Is $0.9999 \cdots=1$?

A: Yes
B: No
C: Depends on what infinity is
D: The question is ill-defined
E: None of the above

Imaginary numbers

- What about square roots of negative numbers?

- Any positive number squared is positive.
- Any negative number squared is positive.
- Thus, square roots of negative numbers can't be either positive or negative, or on the real line at all.

New basic imaginary unit $i=\sqrt{-1}$

- Not on the real line, but we can imagine it as another imaginary line.
- And since it's a different direction, we often choose to represent it as perpendicular in the complex plane.

Complex numbers

- Complex numbers $a+b i$ are a combination of a real number and an imaginary number.
- Complex numbers are "complete" under taking square roots, addition, multiplication, etc.

Invention of complex numbers

A: Before 1000 BCE
B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE

