Review session: combos and primes Lecture 5d: 2022-02-09

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Prime factorization

• For any positive integer n, can factor by attempting to divide by primes. Only have to check up to \sqrt{n} .

Ex. 11240
$$\times 2^{2} = 4$$

= 10 · 1124 $\times 3^{2} = 9$
= 2.5 · 2.562 $\times 5^{2} = 25$
 $2^{2} \cdot 5 \cdot 2 \cdot 281 \times 7^{2} = 49$
= $2^{3} \cdot 5 \cdot 281 \times 11^{2} = (27)$
 $201 \pm 7 = 40 - 1 \times 13^{2} = 167$
 $12^{2} = 279$
 $11 \int 251 \times 13 \int 251 \times 7281$ is prime
 $\frac{22}{67} \times 24 \times 2^{2} \cdot 5 \cdot 281$
 $13 \int 257 \times 281 \times 13^{2} = 167$
 $\frac{25}{6} \times 24 \times 27 \times 281$ is prime
 $\frac{22}{67} \times 24 \times 27 \times 281$
 $\frac{24}{8} \times 2^{2} \cdot 5 \cdot 281$

Try it out

• What is the prime factorization of 12240?

Greatest common divisor

• Use either Euclidean algorithm or prime factorization.

$$g = d (100, 12240)$$

$$12240 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 17$$

$$100 = 10^{2} = (2 \cdot 5)^{2} = 2^{2} \cdot 5^{2}$$

$$g = d (10^{0}, 12240) = 2^{2} \cdot 5 = 20$$

$$24^{0} = 100 \cdot 122 + 40$$

$$100 = 40 \cdot 2 + 20$$

$$100 = 40 \cdot 2 + 20$$

g c d = 20

12

D: 50 E: None of the above

A: 10

B: 20

C: 25

Advanced Combinations

- Given two integers, m and n, can solve for the combination gcd(m, n) = mx + ny by reversing the Euclidean algorithm.
- Can solve for any multiple $c \cdot gcd(m, n) = mx + ny$ by multiplying the above solution by c.
- Can solve for all combinations 0 = mx + ny by dividing by all common factors of m and n and considering all multiples of (x = n, y = -m)
- Can add 0 to any other solution to get different combinations.

Try it out g=d (100, 12240)=20

- Is there an integer combination of 100 and 12240 that is equal to 50?
- What about 60? Yes, multiple of ged.

A: Yes B: No

Can you find three different solutions?

|2240 = |00 - |22 + 40 |00 = 40 - 2 + 2040 = 20 - 2

•
$$20 = 100 - 40 \cdot 2$$

 $20 = 100 - (12240 - 100 \cdot 122) \cdot 2$
 $20 = 100 \cdot (1 + 122 - 2) - 12240 \cdot 2$
 $20 = 100 \cdot 245 - 12240 \cdot 2$

 $60 = 100 \cdot 735 - 12240 \cdot 6$

More solutions Consider 0= 100 x + 12240 y Pivide by ged: D=5x + 612y $=7 \times = 612, Y = -5$ $=) \rightarrow 0 = (00 \cdot 612 - 12240 \cdot 5)$ 60 = 100 · 735 - 12240.6 € +) $60 = 100 - 1347 - 12240 \cdot 11_{5}$ $60 = (00 \cdot 735 - 12240 \cdot 6 + 0)$ 60 = 100 - 735 - 122 40 .6 U = 100. 612 -12240 .5 60 = (00 · 123 - 12240 · 1

Counting divisors

• Take all the exponents in the prime factorization of *n*, add 1 to each of them, and then take the product.

$$E_{X} = \frac{12240}{(4+1)} \cdot \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{5}{5} \cdot \frac{17}{17}$$

$$A_{YS} = \frac{(4+1)(2+1)(1+1)(1+1)}{5 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 60}$$

Divisors are everything with smaller exps

$$E_{\pm}$$
. $2^3 \cdot 3 \cdot 5$ or $2 \cdot 17$
or $2^4 \cdot 3 \cdot 5 \cdot 17$, etc.

Try it out

• How many divisors does 100 have?

$$(00 = 10^2 = (2 \cdot 5)^2 = 2^2 \cdot 5^2$$

 $(2 + 1)(2 + 1) = 9$

Counting common divisors

- Just need to find the divisors of the greatest common divisor.
- How many numbers are divisors of both 100 and 12240?

$$g = d ((00, 12240) = 20)$$

$$ZO = 2^{2} \cdot 5$$

$$A_{rs} = (241)(141) = 3 \cdot 2 = 6$$

$$A_{rs} = A_{rs} = A_{r$$

Euler's ϕ function courts relative primes

- Can use modified sieve of Eratosthenes to remove all numbers that are not relative primes.
- Alternately, each time we remove multiples of a prime p, we remove $\frac{1}{p}$ of the remaining numbers.
- So if a prime factorization is $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where each $a_i > 0$, then

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right)$$

$$\underbrace{\underbrace{}_{\mathbf{x}}}_{\mathbf{y}} \quad \phi(120) = 120 \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right)$$

$$2^{9} \cdot 3 \cdot 5 = 6D \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right)$$

$$= 40 \left(1 - \frac{1}{5} \right) = 40 - 8 = 32$$

Ø1 x x y 5 119

Try it out

• $\phi(1000) = 1000 \cdot (1 - \frac{1}{2})(1 - \frac{1}{5})$ $1000 = 10^3 = 2^3 \cdot 5^3 = 500(1 - \frac{1}{5}) = 400$

•
$$\phi(3993) = 3993 (1 - \frac{1}{2}) (1 - \frac{1}{11})$$

 $3993 = 3 \cdot 133 (1 - \frac{1}{2}) (1 - \frac{1}{11})$
 $= 2662 \cdot (1 - \frac{1}{11})$
 $= 3 \cdot 11 \cdot 121 = 2662 - 242$
 $= 3 \cdot 11^3 = 2420$

- A: 100 B: 400 C: 1210
- D: 2420
- E: None of the above