Review session: combos and primes Lecture 5d: 2022-02-09
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Prime factorization

- For any positive integer n, can factor by attempting to divide by primes. Only have to check up to \sqrt{n}.

Try it out

-What is the prime factorization of 12240 ?

$$
\begin{aligned}
& \text { A: } 2^{4} \cdot 3^{2} \cdot 5 \cdot 17 \\
& \text { B: } 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \\
& \text { C: } 2^{3} \cdot 3^{3} \cdot 5 \cdot 13 \\
& \text { D: } 2^{4} \cdot 7 \cdot 17^{2} \\
& \text { E: None of the above }
\end{aligned}
$$

Greatest common divisor

- Use either Euclidean algorithm or prime factorization.

A: 10
B: 20
C: 25
D: 50
E: None of the above

Advanced Combinations

- Given two integers, m and n, can solve for the combination $\operatorname{gcd}(m, n)=m x+n y$ by reversing the Euclidean algorithm.
- Can solve for any multiple $c \cdot \operatorname{gcd}(m, n)=m x+n y$ by multiplying the above solution by c.
- Can solve for all combinations $0=m x+n y$ by dividing by all common factors of m and n and considering all multiples of $(x=m, y=-n)$
- Can add 0 to any other solution to get different combinations.

Try it out

- Is there an integer combination of 100 and 12240 that is equal to 50 ?
-What about 60?
A: Yes
B: No
- Can you find three different solutions?

More solutions

Counting divisors

- Take all the exponents in the prime factorization of n, add 1 to each of them, and then take the product.

Try it out

- How many divisors does 100 have?

A: 6
B: 8
C: 9
D: 10
E : None of the above

Counting common divisors

- Just need to find the divisors of the greatest common divisor.
- How many numbers are divisors of both 100 and 12240 ?

```
A:}
B: }
C:9
D:10
E : None of the above
```


Euler's ϕ function

- Can use modified sieve of Eratosthenes to remove all numbers that are not relative primes.
- Alternately, each time we remove multiples of a prime p, we remove $\frac{1}{p}$ of the remaining numbers.
- So if a prime factorization is $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where each $a_{i}>0$, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Try it out

- $\phi(1000)$
- ϕ (3993)
A: 100
B: 400
C: 1210
D: 2420
E: None of the above

