Modular addition and subtraction

 Lecture 6b: 2022-02-16 MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu
Clock arithmetic

- Sometimes, when you take enough steps forward, you end up back where you started.
- Notice, sometimes in real-world examples, you don't quite end up exactly where you started, like with time, but somewhere very similar.

Arithmetic mod 5

- Construct a circular number line with 5 positions.
- Can label the positions with arbitrary names.
- But conventionally, we use nonnegative numbers.

Counting steps around the circle

- If I walk n steps around the circle starting from 0 , where do I end up?
- $4 \rightarrow$
- 5
- 8
-11
- What's the general rule?
- 45
- 502
- 21938193
- 349592020124854826

C: 2
D: 3
E: 4

Notation

- Notation for remainder: "rem", "mod", "\%"
- Modular arithmetic is not the same as normal numbers, so we will use a new symbol " \equiv ", sometimes paired with $(\bmod n)$.

Multiple labels

- Remember that there are only 5 numbers in mod- 5 arithmetic, which we have labeled $\{0,1,2,3,4\}$.
- But, just as with fractions $\frac{2}{2}=1$, sometimes it is useful to have other labels.

Addition mod 5

- Addition is repeated counting.
- General rule for addition mod 5: add the numbers together, and the find the "modulus", the remainder after dividing by 5 .

Try it out

- Find the value of x :
- $4+3 \equiv x(\bmod 5)$
$\cdot 1+4 \equiv x(\bmod 5)$
$\cdot 0+2 \equiv x(\bmod 5)$
- $4+14 \equiv x(\bmod 5)$

Subtraction mod 5

- Addition table:

+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	0	1	$\mathbf{2}$	3	4
$\mathbf{1}$	1	2	3	4	0
$\mathbf{2}$	2	3	4	0	1
$\mathbf{3}$	3	4	0	1	2
$\mathbf{4}$	4	0	1	2	3

- Subtraction is the opposite of addition
- Don't need negative numbers!

Additive inverses

- We just showed that you don't need negative numbers in mod-5 arithmetic.
- But the idea of a number you can add that does subtraction is still a good idea.

More labels: "negative numbers"

- We didn't "need" the number 6, because

$$
6 \equiv 1(\bmod 5)
$$

- But it was still useful to have both labels.
- We can add even more labels to make it easy to encode the additive inverses.

$$
-4 \equiv 1(\bmod 5)
$$

Alternate subtraction

- Remember that we invented the normal number line with both positive and negative numbers already.
- So a shortcut for modular subtraction is to do things on the normal number line and convert.
- To convert a negative modular number to the canonical representation of $\{0,1,2,3,4\}$, two steps:
- Add a multiple of 5 big enough to make it positive.
- Divide by 5 and take the remainder.

Try it out

- Find the value of x :
- $1-3 \equiv x(\bmod 5)$
- $4-3 \equiv x(\bmod 5)$
$\cdot-31 \equiv x(\bmod 5)$
- $4-31 \equiv x(\bmod 5)$

Other modular arithmetics

- We can do the same thing with other positive integers besides 5 .
- Ex. Mod-4 arithmetic has 4 numbers $\{0,1,2,3\}$

Try it out

- Find the value of x :
A: 0
B: 1
C: 2
D: 3
E: None of the above
$\cdot 1+3 \equiv x(\bmod 4)$
$\cdot 2-3 \equiv x(\bmod 4)$
$\cdot 1-20 \equiv x(\bmod 4)$
- $2(\bmod 4)+3(\bmod 5) \equiv x(\bmod 4)$

