Modular multiplication Lecture 6c: 2022-02-16

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Clock arithmetic

- Addition can be thought of as clockwise steps around a circular number line.
- Subtraction can be viewed as counterclockwise steps around a circular number line.
- Somehow we are thinking of wrapping the infinite number line around a circle many times.



Math history

- Negative numbers were invented circa 202 BCE – 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- Direct division was invented around 1500 BCE by the Egyptians.
- Irrational numbers were invented around 500 BCE by the Pythagoreans.
- Complex numbers were invented in 1545 CE by Gerolamo Cardano.

132			\equiv	
5089	\blacksquare		Ŧ	Ш
- 704		\blacksquare		IIII
- 6027	T		=	T

Invention of modular arithmetic

A: Before 1000 BCE

B: 1000 BCE to 1000 CE

C: 1000 CE to 1500 CE

D: 1500 CE to 1800 CE

E: After 1800 CE

Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801

Multiplication = repeated addition?

- We think of multiplication as repeated addition.
- But what does it really mean to multiply by a number in modular arithmetic.
- Note: $2 \equiv 7 \pmod{5}$. Does that mean the following? $2 \times 4 \equiv 7 \times 4 \pmod{5}$

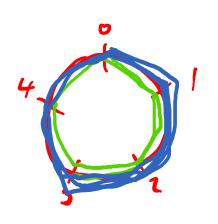
$$2 \times 4 = 4 + 4 = 8 = 3$$
 (m.d. 5)

A: Yes

B: No

E: Maybe

Are we repeating the addition 2 times? Or 7 times?



$$7 \times 4 = (5+2) \times 4$$

= $5 \times 4 + 2 \times 4$
= $0 \times 4 + 2 \times 4 = 8 = 3$

A: 2 times

B: 7 times

C: Both

D: Neither

Distributive law

•
$$a \times (b+c) \equiv a \times b + a \times c \pmod{n}$$

proof. LHS says g - clockwise by jumps

of a a total of (btc) times.

RHS says to go clockwise by

jumps of a , b times.

Then g - clockwise by jumps

of a , c limes.

ullet Going n jumps of any size a always returns to 0.

proof. In jumps of size
$$a = a$$
 jumps of size n

A jump of size $n = a$ jump of size 0

So a jump of size $0 = 0$

Fast modular multiplication

- In mod-n arithmetic, repeating addition 0 times is the same as repeating addition n times.
- $(a \times b) \pmod{n} = (a \mod n) \times (b \mod n)$

Try it out

•
$$4 \times 9 \pmod{6}$$

= $36 \pmod{6}$

= $36 \pmod{6}$

= $17 \pmod{6}$

= $17 \pmod{6}$
 $17 \times 9 \pmod{6}$

= $17 \pmod{6}$

• 5821925 × 2139838283 (mod 5) EUX 7 = 0 mod 5

A: 0 B: 1 C: 2 D: 3 E: 4

Powers / exponents

Exponentiation is repeated multiplication

Ex.
$$4^2$$
 mod $5 \equiv 4 \times 4$ mod 5

$$= 16 \mod 5 \equiv 1 \mod 5$$

$$= (-1)^2 \mod 5 \equiv 1 \mod 5$$

$$= \chi^2 \mod 6 \equiv 8 \mod 6$$

$$= 2 \mod 6$$

Try it out

- 54 (mod 6)
 = 625 mil 6
- $3^2 \pmod{7}$ = $9 \mod 7$ = $2 \mod 7$
- 2⁵ (mod 5)
 = 31 m² 5
 = 2 m² 5

```
WRONG

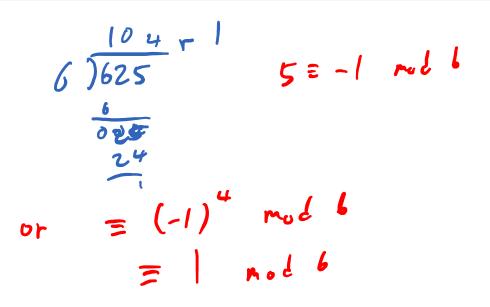
2 mod 5

= 2 mod 5

WRONG

Can't take mod

of exponents!
```



A: 0

B: 1 C: 2

D: 3

E: 4

Perfect squares

• Which numbers in arithmetic mod-5 are squares?

$$0^{2} \equiv 0$$
 mod 5

 $1^{2} \equiv 1$ mod 5

 $2^{2} \equiv 4$ mod 5

 $3^{2} \equiv 9$ mod 5 $\equiv 4$ mod 5

 $4^{2} \equiv 16$ mod 5 $\equiv 1$ mod 5

Square roots are the opposite of squaring

$$\sqrt{4} \equiv 2, 3$$
Notice, only some

 $\sqrt{1} \equiv 1, 4$
Numbers have

 $\sqrt{3} \equiv 1, 4$
Square roots.

Powers of 2

• What are all the powers of 2?

What about in mod-11 arithmetic? (powers of 2)

What about in mod-9 arithmetic?

A word on division

- Modular arithmetic is in some ways built on division with remainder of normal integers.
- But what about division within modular arithmetic?
- Describe what you think $\frac{1}{2}$ (mod 5) should be.

Please reply in chat or shout out your guess.

Clain:
$$\frac{1}{2} = 3$$
 nod 5

Became $2 \times 3 = 1$ nod 5