Modular multiplication Lecture 6c: 2022-02-16

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Clock arithmetic

- Addition can be thought of as clockwise steps around a circular number line.
- Subtraction can be viewed as counterclockwise steps around a circular number line.

- Somehow we are thinking of wrapping the infinite number line around a circle many times.

Math history

- Negative numbers were invented circa 202 BCE 220 CE in China.
- Multiplication was invented around 4000 BCE by the Babylonians.
- Direct division was invented around 1500 BCE by the Egyptians.
- Irrational numbers were invented around 500 BCE by the Pythagoreans.
- Complex numbers were invented in 1545 CE by Gerolamo Cardano.

Invention of modular arithmetic

A: Before 1000 BCE
B: 1000 BCE to 1000 CE
C: 1000 CE to 1500 CE
D: 1500 CE to 1800 CE
E: After 1800 CE

Multiplication $=$ repeated addition?

- We think of multiplication as repeated addition.
- But what does it really mean to multiply by a number in modular arithmetic.
- Note: $2 \equiv 7(\bmod 5)$. Does that mean the following?

$$
\begin{aligned}
& 2 \times 4 \equiv 7 \times 4(\bmod 5) \\
& 4+4 \equiv 8 \equiv 3
\end{aligned} \begin{aligned}
& \\
& \begin{array}{l}
\text { A: Yes } \\
\text { B: No } \\
\text { E: Maybe }
\end{array}
\end{aligned}
$$

- Are we repeating the addition 2 times? Or 7 times?
A: 2 times
B: 7 times
C: Both
D: Neither

Distributive law

- $a \times(b+c) \equiv a \times b+a \times c(\bmod n)$
- Going n jumps of any size a always returns to 0 .

Fast modular multiplication

- In mod- n arithmetic, repeating addition 0 times is the same as repeating addition n times.
- $(a \times b)(\bmod n)=(a \bmod n) \times(b \bmod n)$

Try it out

- $4 \times 9(\bmod 6)$
- $3 \times 6(\bmod 7)$
- $21 \times 39(\bmod 5)$
- $5821925 \times 2139838283(\bmod 5)$
A: 0
B: 1
C: 2
D: 3
E: 4

Powers / exponents

- Exponentiation is repeated multiplication

Try it out

$\cdot 5^{4}(\bmod 6)$
$\cdot 3^{2}(\bmod 7)$

- $2^{5}(\bmod 5)$
A: 0
B: 1
C: 2
D: 3
E: 4

Perfect squares

- Which numbers in arithmetic mod-5 are squares?
- Square roots are the opposite of squaring

Powers of 2

- What are all the powers of 2 ?
- What about in mod-11 arithmetic?
- What about in mod-9 arithmetic?

A word on division

- Modular arithmetic is in some ways built on division with remainder of normal integers.
- But what about division within modular arithmetic?
- Describe what you think $\frac{1}{2}(\bmod 5)$ should be.

[^0]
[^0]: Please reply in chat or shout out your guess.

