Congruences and modular arithmetic Lecture 7a: 2022-02-28

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Evens and odds

- Even + even = even
- Even + odd = 0 31
- Odd + odd = even
- Even × even = even
- Even × odd = even
- Odd × odd = old

A: Even

B: Odd

D: ???

C: Depends

E: None of the above

 Whether the result is even or odd depends only on if the original numbers were even or odd.

Generalizing to divisibility?

- Even = divisible by 2. Odd = not divisible by 2.
- Can we do the same thing with e.g. 3?
- Let's say:
 - "threven" = divisible by 3
 - "throdd" = not divisible by 3

- A: Threven
- B: Throdd
- C: Depends
- D: ???
- E: None of the above

- Threven + threven = three
- Threven + throdd = +hads
- Throdd + throdd = ? !!
- Threven × threven = Hreven
- Threven × throdd = flrem
- Throdd × throdd = throll (3a+9)(31+12) - 9.6+31.1+362+9

$$3+5=8$$
 $3a+3b+r$
= $3(a+6)+r$
 $7+5=12$ $5+5=10$

Modular arithmetic to the rescue

• Evens and odds are related to mod-2 arithmetic.

• Divisibility by 3 is related to mod-3 arithmetic.

Congruence classes and labels

 Two numbers are congruent "≡" mod-n if they are both labels for the same number in mod-n arithmetic.

Mod-3 rules for adding/multiplying

- Threven + Threven = Areven
- Threven + 1-Throdd = 1-throdd
- Threven + 2-Throdd = 2 Hold
- 1-Throdd + 1-Throdd = 2-1406 3a+1+36+1
- 1-Throdd + 2-Throdd = threven
- 2-Throdd + 2-Throdd = 1- +4-11

3a + 36+1 = 3 (a+6)+1

A: Threven

B: 1-Throdd

C: 2-Throdd

D: ???

E: None of the above

	4	hrev	throt?	
	\mathcal{L}	6		2-throad
+	0	1	2	
0	0	1	2	
1	1	2	0	
2	2	0	1	

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Congruence classes

 The congruence class (mod n) of a sum or product is determined by the congruence classes (mod n) of the numbers being added or multiplied.

Ex. If
$$a \equiv 2 \mod 5$$
 $b \equiv 4 \mod 5$,

then $a+b \equiv 1 \mod 5$.

 $|2+204 \equiv 2/6 \equiv 1 \mod 5$

proof. Let $a \equiv k \mod n$, $b \equiv l \mod n$

Then $a = k + \times n$, $b = l + y n$, for some x, y

So $a+6 = (k+l) + (x+y) n \equiv k+l \mod n$.

 $ab = (k+xn) \cdot (l + y n)$
 $= kl + \times nl + ynk + \times yn$
 $= kl \mod n$.

Try it out

- Suppose $68 \equiv 2 \mod 6$ and $293 \equiv 5 \mod 6$.
- What is $68 + 293 \mod 6$?

• What is $68 \times 293 \mod 6$?

A: 1 mod 6

B: 2 mod 6

C: 3 mod 6

D: 4 mod 6

E: 5 mod 6

Alternate views of mod-arithmetic

- Adding/multiplying points on a clock.
- Adding/multiplying classes of congruent integers.

Arithmetic shortcuts

• Sometimes, certain orders of arithmetic are easier.

 $\frac{254191101 \times 289084}{437}$

A: Multiply first

B: Divide 254191101 first

C: Divide 289084 first

D: Doesn't matter

E: None of the above

 For addition and multiplication in modular arithmetic, can replace numbers with any number from their congruence class.

Ex.
$$224.376$$
 nod 17

 $1 > 84224$ nod 17

 $3.2 = 6$ nod 17

Common congruence tricks

 Working in mod-n, sometimes it helps to replace really big labels with a label in {0,1,2,...,n-1}

$$E \times$$
 46 nod 17 = 409% nod 17 = 16 mod 17
= $(4^3) \cdot (4^3)$ nod 17
= $64 \cdot 64$ mod 17 = $13 \cdot 13$ mod 17
= 169 nod 17 = 16 nod 17

• Sometimes, using negative numbers makes things easier.

easier.

Ex. 4 mod
$$17 = 4^2 \cdot 4^2$$

Try it out

• $637 \times 437 \pmod{7}$

• $507 \times 237 \pmod{509}$

• 367² (mod 369)

• $7^6 \pmod{51}$

A: 0

B: 4

C: 35

D: 43

E: None of the above

Try it out

• 432903 + 1463974 (mod 100)

• $105 \times 237 \pmod{7}$

• 4502² (mod 4507)

• $76 \times 77 \times 78 \pmod{79}$

A: 0

B: 25

C: 73

D: 77

E: None of the above