Congruences and modular arithmetic Lecture 7a: 2022-02-28
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

Evens and odds

- Even + even = ever
- Even + odd =odd
- Odd + odd = even
- Even \times even $=$ even
- Even \times odd $=$ even
- Odd \times odd $=$ old

- Whether the result is even or odd depends only on if the original numbers were even or odd.

Generalizing to divisibility?

- Even = divisible by 2. Odd = not divisible by 2.
- Can we do the same thing with e.g. 3?

A: Threven

- Let's say:
- "threven" = divisible by 3
- "throdd" = not divisible by 3
$3 a$
$3 a+r^{1,2}$

B: Throdd
C: Depends
D: ???
E: None of the above

- Threven + threven $=$ ftreem
$3+6=9$
$3 a+3 b=3(a+b)$
- Threven + throdd $=$ throds $3+5=8 \quad 3 a+3 b+r$
- Throdd + throdd $=$? ? ? 2 ppins $\quad 755=12 \quad 515=36$
- Threven \times threven $=$ threven
$(3 a)(3 b)=9 a b, \quad 6 \times 3=18$
- Threven \times throdd $=$ fhrem
- Throdd \times throdd $=$ throd!
$1 \times 2=2$
($3 a+r_{1}$) (3b+ r_{2})
$4 \times 5=20$

Modular arithmetic to the rescue

- Evens and odds are related to mode arithmetic. evens \sim all labels for 0 odes ~ all baels for 1

- Divisibility by 3 is related to mod- 3 arithmetic. $\{0,1,2\}$

$$
\left.\begin{array}{l}
\text { "Hreven" }=\text { all labels for } 0 \\
\text { "1-throdl" = all lobes for } 1 \\
" 2-f t r o d d "=\text { all lobe's for } 2
\end{array}\right\}
$$

Congruence classes and labels

- Two numbers are congruent " \equiv " mod-n if they are both labels for the same number in mod-n arithmetic.
Ex.

$$
\begin{aligned}
1 & \equiv 4 \\
\bmod & 3 \\
2 & \equiv 8 \\
\bmod & 3 \\
-5 & \equiv 0
\end{aligned} \bmod 5
$$

"then "~ divisible by $3 \sim$ congruent to 0 mod 3

$$
\succ 3 a
$$

"I-thodd" ~ congruent L I mod 3
$\searrow \tilde{3}_{\text {rat }} 1$ remainder of 1 when divided by 3
" 2 -throdd" \sim congruent to 2 mod 3

$$
>3 a+2
$$

Mod-3 rules for adding/multiplying

- Threven + Threven = threven

-1-Throdd +2 -Throdd $=$ throven
- 2 -Throdd +2 -Throdd $=1-$ throld

threven				
+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	
$\mathbf{0}$	0	1	2	
$\mathbf{1}$	1	2	0	
$\mathbf{2}$	2	0	1	

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	0	0	0
$\mathbf{1}$	0	1	$\mathbf{2}$
$\mathbf{2}$	0	$\mathbf{2}$	1

Congruence classes

- The congruence class $(\bmod n)$ of a sum or product is determined by the congruence classes $(\bmod n)$ of the numbers being added or multiplied.
Ex. If $a \equiv 2 \bmod 5 \quad b \equiv 4 \bmod 5$, then $a+b \equiv 1 \bmod 5$.

$$
12+204 \equiv 216 \equiv 1 \bmod 5
$$

proof. Let $a \equiv k \bmod n, b \equiv l \bmod n$
Then $a=k+x n, b=l+y n$, for sine x, y
So $a+b=(k+l)+(x+y) n \equiv k+l \bmod n$.

$$
\begin{aligned}
a b & =\left(k+x_{n}\right)\left(l+y_{n}\right) \\
& =k l+\underbrace{x n l+y_{n} k+x_{y n}{ }^{2}}_{d_{i v i s i} b_{k} b_{y} n} \\
& \equiv k l \operatorname{mol} n .
\end{aligned}
$$

Try it out

- Suppose $68 \equiv 2 \bmod 6$ and $293 \equiv 5 \bmod 6$.
-What is $68+293 \bmod 6$?

$$
\begin{aligned}
& \equiv 2+5 \bmod 6 \\
& \equiv 7 \operatorname{rod} 6 \\
& \equiv 1 \bmod 6
\end{aligned}
$$

-What is $68 \times 293 \bmod 6$?

$$
\begin{aligned}
& \equiv 2 \times 5 \\
& \equiv 10 \\
& \equiv 4 \mathrm{~mol} 6
\end{aligned}
$$

A: $1 \bmod 6$
B: $2 \bmod 6$
C: $3 \bmod 6$
D: $4 \bmod 6$
E: $5 \bmod 6$

Alternate views of mod-arithmetic

- Adding/multiplying points on a clock.
- Adding/multiplying classes of congruent integers.

Arithmetic shortcuts

- Sometimes, certain orders of arithmetic are easier.
254191101×289084
437

A: Multiply first
B: Divide 254191101 first
C: Divide 289084 first
D: Doesn't matter
E : None of the above

- For addition and multiplication in modular arithmetic, can replace numbers with any number from their congruence class.

$$
\begin{aligned}
& \text { Ea. } 224 \cdot 376 \bmod 17 \\
& \downarrow \quad 284224 \bmod 17 \equiv 6 \operatorname{aod} 17 \\
& 3 \cdot 2 \bmod 17 \equiv 6 \operatorname{nod} 17
\end{aligned}
$$

Common congruence tricks

- Working in mod-n, sometimes it helps to replace really big labels with a label in $\{0,1,2, \ldots, n-1\}$

$$
\text { Ex } \begin{aligned}
& 4^{6} \bmod 17 \equiv 4096 \bmod 17 \equiv 16 \bmod 17 \\
\equiv & \left(4^{3}\right) \cdot\left(4^{3}\right) \bmod 17 \\
\equiv & 64 \cdot 64 \bmod 17 \equiv 13 \cdot 13 \bmod 17 \\
\equiv & 169 \bmod 17 \equiv 16 \bmod 17
\end{aligned}
$$

- Sometimes, using negative numbers makes things easier.

$$
\begin{aligned}
4^{6} \bmod 17 & \equiv 4^{2} \cdot 4^{2} \cdot 4^{2} \bmod 17 \\
\equiv\left(4^{2}\right)^{3} \equiv 16^{3} \equiv(-1)^{3} & \equiv-1 \bmod 17 \\
& \equiv 16 \bmod 17
\end{aligned}
$$

Ex.

$$
\begin{array}{r}
439.632 \text { mod } 633 \equiv 277448 \bmod 633 \\
\equiv 194 \text { mod } 633 \\
\equiv 439 \cdot-1 \\
\equiv-439 \operatorname{nod} 633 \equiv-439+633 \text { mod } 633 \\
\equiv 194 \text { mad } 633
\end{array}
$$

Try it out

- $637 \times 437(\bmod 7)$
- $507 \times 237(\bmod 509)$
- $367^{2}(\bmod 369)$
- $7^{6}(\bmod 51)$
A: 0
B: 4
C: 35
D: 43
E: None of the above

Try it out

- $432903+1463974(\bmod 100)$
- $105 \times 237(\bmod 7)$
- $4502^{2}(\bmod 4507)$
- $76 \times 77 \times 78(\bmod 79)$
A: 0
B: 25
C: 73
D: 77
E: None of the above

