Modular arithmetic computations review Lecture 7c: 2022-03-02
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

General rules for congruence class

- $a \equiv b(\bmod n) \leftrightarrow a-b \equiv 0(\bmod n)$, which is to say that a and b differ by a multiple of n.
Ex

$$
\begin{array}{rlr}
2 \equiv 7 & (\bmod 5) \\
71 & \equiv 51 & (\bmod 10)
\end{array} \quad 71-51=20
$$

- To find the smallest positive label for $a(\bmod n)$, simply find the remainder of $a \div n$.
E.

$$
\begin{aligned}
& 7 \div 5=1+2,7 \equiv 2 \text { nod } 5 \\
& 71 \div 10=7 \mathrm{rl}, 51 \div 10=5 \mathrm{rl} \\
& \begin{array}{cc}
71 & \equiv 1 \operatorname{nod} 10 \\
51 & \equiv 1 \\
m a t & \text { If } a<n \text {, fen }
\end{array} \\
& \begin{array}{lll}
51 \equiv 1 & \text { mot } & \text { co } \\
51 \equiv 71 & \text { mod } & \text { co }
\end{array}\left\{\begin{array}{ccc}
\text { a } & \text { is already } \\
\text { the } & \text { smallest } \\
2 & \text { mod } \\
2
\end{array}\right.
\end{aligned}
$$

Adding in modular arithmetic

- When adding $a+b(\bmod n)$, two options:
- (1) Add the two numbers in normal arithmetic first, and then divide to find the smallest positive label.
Ex.

$$
\begin{aligned}
& 76+25(\bmod 7) \\
\equiv & 101(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

- (2) Replace the two numbers with another number from their respective congruence classes first, then add, and then replace again.

$$
\text { Em. } \begin{aligned}
& 76+25(\bmod 7) \\
\equiv & 6+4(\bmod 7) \\
\equiv & 10(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

Multiplying in modular arithmetic

- When multiplying $a \times b(\bmod n)$, two options:
- (1) Multiply the two numbers in normal arithmetic first, and then divide to find the smallest positive label.

$$
\begin{array}{lll}
& 76 \times 25(\bmod 7) & 76 \\
\equiv & 1900(\bmod 7) & \frac{\times 25}{380} \\
\equiv 3(\bmod 7) & \frac{152}{1900} & \frac{14}{50}
\end{array}
$$

(2) Replace the two numbers with another number $\frac{7}{\frac{7}{f p o m}}$ their respective congruence classes first, then multiply, and then replace again. (sometimes helpful to use negatives)
E.

$$
\begin{aligned}
& 76 \times 25(\bmod 7) \\
\equiv & 6 \times 4(\bmod 7) \\
\equiv & \equiv-1 \times 4(\bmod 7) \\
\equiv & 34(\bmod 7) \\
\equiv & \equiv-4(\bmod 7)
\end{aligned}
$$

Simple powers in modular arithmetic

- To compute powers, sometimes it is easier to break it up into a product and simplify.

Ex.

$$
\begin{aligned}
& \text { nplify. } \\
& \equiv 1024 \bmod 7 \\
& \equiv 2 \mathrm{mod} 7
\end{aligned}
$$

$$
\equiv \underbrace{2 \times 2 \times 2}_{8 \equiv 1} \times \underbrace{2 \times 2 \times 2}_{1} \times \underbrace{2 \times 2 \times 2 \times 2}_{1}
$$

$$
\begin{array}{rl}
8 \equiv 1 & 1 \\
\equiv & \left(2^{3}\right)^{3} \cdot 2 \equiv(1)^{3} \cdot 2 \equiv 2
\end{array}
$$

Ex. $2^{16} \bmod 7 \equiv\left(2^{3}\right)^{5} \cdot 2^{1} \equiv 2 \operatorname{nod} 7$

$$
\begin{aligned}
& \equiv\left(\left(\left(2^{2}\right)^{2}\right)^{2}\right)^{2} \equiv\left(\left((4)^{2}\right)^{2}\right)^{2} \equiv\left((16)^{2}\right)^{2} \\
& \equiv\left((2)^{2}\right)^{2} \equiv 4^{2} \equiv 16 \equiv 2 \bmod 7
\end{aligned}
$$

Try it out

$$
\begin{gathered}
-637 \times 437(\bmod 7) \\
0 \times 437(\bmod 7) \\
\equiv 0 \quad \bmod 7
\end{gathered}
$$

$$
\begin{array}{r}
91 \\
7 \longdiv { 6 3 7 } \\
\frac{63}{07}
\end{array}
$$

- $507 \times 237(\bmod 509)$

$$
\equiv-2 \times 237
$$

$$
\equiv-474+509 \equiv 35
$$

- $367^{2}(\bmod 369)$

$$
\equiv(-2)^{2} \equiv 4 \bmod 367
$$

$$
\begin{aligned}
& \text { - } 7^{6}(\bmod 51) \\
& \equiv(49)^{3} \bmod 51 \\
& \equiv(-2)^{3} \bmod 31 \\
& \equiv-8 \operatorname{mot} 51 \equiv 43
\end{aligned}
$$

Try it out

- $432903+1463974(\bmod 100)$

$$
\equiv 3+74 \equiv 77
$$

- $105 \times 237(\bmod 7)$

$$
\equiv 0 \times 237 \equiv 0
$$

- $4502^{2}(\bmod 4507)$

$$
\equiv(-5)^{2} \equiv 25
$$

- $76 \times 77 \times 78(\bmod 79)$

$$
\begin{gathered}
\equiv-3 \times-2 \times-1 \\
\equiv-6 \equiv 73
\end{gathered}
$$

Try it out

$$
\begin{aligned}
& \text { Try it out } \\
& \begin{array}{l}
\left.3^{64}(\bmod 78) \equiv\left(\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2} \\
3^{1} \equiv 3 \\
3^{2} \equiv 9 \\
3^{4} \equiv 9 \times 9 \equiv 81 \equiv 3 \\
3^{8} \equiv 9 \\
3^{16} \equiv 9 \times 9 \equiv 81 \equiv 3 \\
3^{32} \equiv 9
\end{array} \\
& 3^{1} \equiv 3 \\
& 3^{2} \equiv 9 \\
& 3^{4} \equiv\left(3^{2}\right)^{2} \\
& 3^{8 \times 8} \equiv 9 \times 9 \equiv 81=3
\end{aligned} \begin{aligned}
& 3^{4} \equiv 81 \equiv \\
& 3^{8} \equiv\left(3^{4}\right)^{2} \\
& \equiv(3)^{2} \equiv \\
& 3^{8} \equiv\left(3^{8}\right)^{8} \equiv(9)^{8} \equiv 3
\end{aligned}
$$

$$
7 8 \longdiv { \frac { 1 } { \frac { 7 8 } { 3 } } } { } ^ { \frac { 7 8 } { } }
$$

$$
\begin{aligned}
& 3^{1} \equiv 3 \\
& 3^{2} \equiv 9 \\
& 3^{4} \equiv\left(3^{2}\right)^{2} \equiv 9^{2} \equiv 81 \equiv 3 \\
& 3^{4} \equiv 81 \equiv 3 \text { mod } 78 \\
& 3^{8} \equiv\left(3^{4}\right)^{2} \equiv 81^{2} \text { an } \\
& \equiv(3)^{2} \equiv 9
\end{aligned}
$$

Try it out

- $3^{64}(\bmod 25)$

$$
\begin{aligned}
& 3^{\prime} \equiv 3 \\
& 3^{2} \equiv 9 \\
& 3^{4} \equiv 9^{2} \equiv 81 \equiv 6 \\
& 3^{8} \equiv 3^{4} \cdot 3^{4} \equiv 6 \cdot 6 \equiv 36 \equiv 11 \\
& 2 5 \longdiv { \frac { 3 1 } { \frac { 7 5 } { 6 } } } \\
& 3^{16} \equiv 3^{8} \cdot 3^{8} \equiv 11 \cdot 11 \equiv 121 \equiv 21 \\
& 3^{32} \equiv 21.21 \equiv 441 \equiv 16 \\
& \begin{array}{lll}
3^{64} \equiv 16 \cdot 16 \equiv 256 \equiv 6 \\
3^{3} \equiv 27 \equiv 2 & 3^{48} \equiv 6^{2} \equiv 36 \equiv 11 & 64 \\
3^{6} \equiv 2^{2} \equiv 4 & 3^{6^{4}} \equiv 3^{48} \cdot 3^{16} \equiv 11 \cdot 21 & \frac{-48}{16}
\end{array} \\
& 3^{12} \equiv 4^{2} \equiv 16 \quad \equiv 231 \equiv 6 \\
& 3^{24} \equiv 16^{2} \equiv 6 \\
& \text { A: } 3 \\
& \text { B: } 6 \\
& \text { C: } 9
\end{aligned}
$$

