Modular division

 Lecture Ba: 2022-03-06MAT A02 - Winter 2022 - UTS Prof. Yon William Mu

Midterm difficulty
A: Too easy/ short
B: Easy
C : About right
D. Harl
$E:$ Too hard / impossible

Division in the natural numbers

- Let's go back to inventing division by reversing multiplication, and say we haven't invented fractions.
- Definition: if $z \times y=x$, then $x \div y=z$

Ex. $\quad 3 \times 5=15$, so $15 \div 5=3$

$$
\text { or } \frac{15}{5}=3 \quad\binom{\text { ratio }}{\text { notation }}
$$

- When does $x \div y=\frac{x}{y}$ make sense as an integer?

Division in mod 5 arithmetic

\mathbf{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4
$\mathbf{2}$	0	2	4	1	3
$\mathbf{3}$	0	3	1	4	2
$\mathbf{4}$	0	4	3	2	1

- $4 \times 3 \equiv 2(\bmod 5)$
$4 \times 3=12$
$12 \div 3=4$
- Thus, $2 \div 3 \equiv 4(\bmod 5)$
- What is $2 \div 4(\bmod 5) ? \equiv 3$
- $2 \times 4 \equiv 3(\bmod 5)$.
- What is $3 \div 4(\bmod 5)$? $\equiv 2$

$$
\begin{aligned}
& 2 \times 4=8 \\
& 8 \div 2=4 \\
& 8 \div 4=2
\end{aligned}
$$

-What is $\frac{3}{2}(\bmod 5) ? \equiv 4$

- What is $4 \div 3(\bmod 5)$?

$$
4 \times 3 \equiv 2
$$

- What is $\frac{4}{2}(\bmod \equiv 52)$?

B: 1
C: 2
D: 3
E: 4

Division in mod 5 and mod 7

\mathbf{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6
$\mathbf{2}$	0	2	4	6	1	3	5
$\mathbf{3}$	0	3	6	2	5	1	4
$\mathbf{4}$	0	4	1	5	2	6	3
$\mathbf{5}$	0	5	3	1	6	4	$\mathbf{2}$
$\mathbf{6}$	0	6	5	4	3	2	1

	S
5.0	0
5.1	5
5.2	$10 \equiv 3$
5.3	$15 \equiv 1$
5.4	$20 \equiv 6$
5.5	$25 \equiv 4$
$5-6$	$30 \equiv 2$

- Find $\frac{4}{3}(\bmod 7)$.

Need x sot. $x \cdot 3 \equiv 4$
$6 \cdot 3=4$
$4 \div 3=6$

- Find $\frac{3}{-}(\bmod 7) . \quad$ Need x set. $4 \cdot x \equiv 3$

$$
\begin{gathered}
4 \cdot 6 \equiv 3 \\
3 \div 4 \equiv 6
\end{gathered}
$$

- Find $\frac{3}{5}(\bmod 7)$. Need $\quad x \cdot 5 \equiv 3$

$$
\begin{aligned}
& 2 \cdot 5 \equiv 3 \\
& 3 \div 5 \equiv 2
\end{aligned}
$$

A: 0
B: 2
C: 4
D: 6
E: None of the above

Reciprocals

$$
\frac{3}{2}=3 \cdot \frac{1}{2}=3 \cdot 0,5=1.5
$$

- A reciprocal $y=\frac{1}{x}$ of a number x is a number such that $x \times y \equiv 1$.

Ex. $2.3 \equiv 1(\bmod 5)$
So $\underbrace{2 \equiv \frac{1}{3}}$ and $3=\frac{1}{2}$
Ex. $4.4 \equiv 1(\bmod 5)$

$$
x \cdot x=1 ?
$$

So $\quad 4=\frac{1}{4} . \quad 4 x-1(\bmod) \quad \begin{aligned} & x^{2}=1 \\ & x= \pm 1\end{aligned}$

- When a reciprocal exists, can use for multiplication.

Ex.

$$
\begin{aligned}
\frac{4}{3}(\bmod 5) & \equiv 4 \cdot \frac{1}{3}(\bmod 5) \\
& \equiv 4 \cdot 2(\operatorname{mot} 5) \equiv 8 \equiv 3(\operatorname{mot} 5)
\end{aligned}
$$

Associativity of multiplication/division

$$
\begin{aligned}
& \text { - } \frac{2 \times 3}{5}(\bmod 7) \\
& \equiv \frac{2}{5} \cdot 3 \equiv 6 \cdot 3 \equiv 18 \equiv 4 \\
& \equiv 2 \cdot \frac{3}{5} \equiv 2 \cdot 2 \equiv 4 \\
& \equiv \frac{1}{5} \cdot 2 \cdot 3 \equiv 3 \cdot 2 \cdot 3 \\
& \equiv 18 \equiv 4
\end{aligned}
$$

\mathbf{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{0}$	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6
$\mathbf{2}$	0	2	4	6	1	3	5
$\mathbf{3}$	0	3	6	2	5	1	4
$\mathbf{4}$	0	4	1	5	2	6	3
$\mathbf{5}$	0	5	3	1	6	4	2
$\mathbf{6}$	0	6	5	4	3	2	1

A: 0
B: 2
C: 4
D: 6
E: None of the above

- Multiplication and division are associative, so you can do them in any order, so long as the reciprocal is well-defined.

Divisions mod 6

- $2 \div 5(\bmod 6)$

Neal 5.x $\equiv 2$
$5 \cdot 4 \equiv 2$

$$
2 \div 5 \equiv 4
$$

- $5 \div 0(\bmod 6)$

Need $x \cdot 0 \equiv 5$
E. No sech number

- $\frac{2}{3}(\bmod 6)$

Need $x \cdot 3 \equiv 2$
E. No such number.

A: 0
B: 2
C: 4
D: 6
E : None of the above

- $\frac{4}{2}(\bmod 6)$

$$
N_{\text {eel }} \times-2 \equiv 4
$$

One ans: $x=2$
Second ans: $x=5$

$$
2 \cdot 2=4
$$

Not uriquey $\begin{aligned} & 5 \cdot 2 \equiv 10 \equiv 4 \\ & \text { defines. }\end{aligned}$

Problems with non-uniqueness

- Note:
- $3 \times 2 \equiv 6(\bmod 12)$
- $9 \times 2 \equiv 6(\bmod 12)$

$$
\begin{aligned}
& 9 \times 2 \equiv 18 \equiv 6 \\
& 3 \times 6 \equiv 18 \equiv 6
\end{aligned}
$$

- $3 \times 6 \equiv 6(\bmod 12)$
- Consider $\frac{6}{3} \times \frac{6}{2}(\bmod 12)$

$$
6 \div 3 \equiv 2
$$

$$
6 \div 2 \equiv 3
$$

$$
\begin{aligned}
& \equiv 2.3 \equiv 6 \\
& \equiv \frac{36}{6}(\bmod 12) \equiv \frac{0}{6}(\bmod 12) \equiv 0 \\
& \quad 6 \div 2 \equiv 9 \\
& \quad 6 \div 3 \equiv 6 \\
& \equiv 6.9(\bmod \quad(2) \equiv 54(\bmod 12) \equiv 6
\end{aligned}
$$

Division in modular arithmetic

- Definition: if $z \times y=x$, then $x \div y=z$
- When does $x \div y=\frac{x}{y}$ make sense as an integer?

> A: It always makes sense.
> B: So long as $y \neq 0$
> C: So long as x is a multiple of y
> D: So long as both B and C true
> E: None of the above

- Each column of the multipilication table gives all multiples of that number.

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$	0	0	0	0	0	16
$\mathbf{1}$	0	1	2	3	4	5
$\mathbf{2}$	0	2	4	0	2	4
$\mathbf{3}$	0	3	0	3	0	3
$\mathbf{4}$	0	4	2	0	4	2
$\mathbf{5}$	0	5	4	3	2	1

What should we do?

A: It's fine. We don't need all divisions to make sense.

B: Let's invent more numbers!

D: It's fine. The answer doesn't need to be a number.

Connection to earlier lectures

- In mod n arithmetic, when are the multiples of an integer t all integers $\{0,1, \ldots, n-1\}$?

Guesses in chat

	Modulus n										
		1	2	3	4	5	6	7	8	9	10
Tossing number t	1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	2	Y	N	Y	N	Y	N	Y	N	Y	N
	3	Y	Y	N	Y	Y	N	Y	Y	N	Y
	4	Y	N	Y	N	Y	N	Y	N	Y	N
	5	Y	Y	Y	Y	N	Y	Y	Y	Y	N
	6	Y	N	N	N	Y	N	Y	N	N	N
	7	Y	Y	Y	Y	Y	Y	N	Y	Y	Y
	8	Y	N	Y	N	Y	N	Y	N	Y	N
	9	Y	Y	N	Y	Y	N	Y	Y	N	Y
	10	Y	N	Y	N	N	N	Y	N	Y	N

Precisely when n and t are relatively prime

Theorems

- In arithmetic $\bmod n$, we can divide by any number t relatively prime to n.
In mod -6 arithmetic, can only dixie uniquely by 1 and 5 .
- If p is a prime number, then in arithmetic $\bmod p$, we can divide by any number except for 0 .

But in mol 7 arithmetic, can divide by any number except 0 .

