Modular division Lecture 8a: 2022-03-06

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Division in the natural numbers

- Let's go back to inventing division by reversing multiplication, and say we haven't invented fractions.
- Definition: if $z \times y = x$, then $x \div y = z$

• When does $x \div y = \frac{x}{y}$ make sense as an integer?

A: It always makes sense.

- B: So long as $y \neq 0$
- C: So long as x is a multiple of y
- D: So long as both B and C true
- E: None of the above

Division in mod 5 arithmetic

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

• $4 \times 3 \equiv 2 \pmod{5}$

- Thus, $2 \div 3 \equiv 4 \pmod{5}$
- What is 2 ÷ 4 (mod 5)?
- $2 \times 4 \equiv 3 \pmod{5}$.
- What is $3 \div 4 \pmod{5}$?
- What is $\frac{3}{2} \pmod{5}$?
- What is 4 ÷ 3 (mod 5)?
- What is $\frac{4}{2}$ (mod 5)?

A: 0 B: 1 C: 2 D: 3 E: 4

Division in mod 5 and mod 7

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

• Find $\frac{4}{3}$ (mod 7).

- Find $\frac{3}{4} \pmod{7}$.
- Find $\frac{3}{5}$ (mod 7).

A: 0 B: 2 C: 4 D: 6 E: None of the above

Reciprocals

• A reciprocal $y = \frac{1}{x}$ of a number x is a number such that $x \times y \equiv 1$.

• When a reciprocal exists, can use for multiplication.

Associativity of multiplication/division

$$\bullet \frac{2 \times 3}{5} \pmod{7}$$

X	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

A: 0 B: 2

C: 4

D: 6

E: None of the above

 Multiplication and division are associative, so you can do them in any order, so long as the reciprocal is well-defined.

Divisions mod 6

• 2 ÷ 5 (mod 6)

• 5 ÷ 0 (mod 6)

• $\frac{2}{3}$ (mod 6)

•	4	(mod 6)	
•	2	(mou o)	

X	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

A: 0	
B: 2	
C: 4	
D: 6	
E: None o	f the above

Problems with non-uniqueness

- Note:
 - $3 \times 2 \equiv 6 \pmod{12}$
 - $9 \times 2 \equiv 6 \pmod{12}$
 - $3 \times 6 \equiv 6 \pmod{12}$
- Consider $\frac{6}{3} \times \frac{6}{2}$ (mod 12)

Division in modular arithmetic

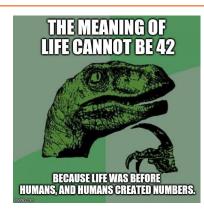
- Definition: if $z \times y = x$, then $x \div y = z$
- When does $x \div y = \frac{x}{y}$ make sense as an integer?
 - A: It always makes sense. B: So long as $y \neq 0$ C: So long as x is a multiple of y
 - D: So long as both B and C true
 - E: None of the above
- Each column of the multiplication table gives all multiples of that number.

Х	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

What should we do?

A: It's fine. We don't need all divisions to make sense.

B: Let's invent more numbers!



C: All of math is pointless

Fun facts with Squidward!

some day the universe will die out of coldness thus making your accomplishments pointless D: It's fine. The answer doesn't need to be a number.

WHAT IF I TOLD YOU

HERE WAS ANOTHER WAY

Connection to earlier lectures

• In mod n arithmetic, when are the multiples of an integer t all integers $\{0, 1, ..., n - 1\}$?

Guesses in chat

Theorems

• In arithmetic mod *n*, we can divide by any number *t* relatively prime to *n*.

• If p is a prime number, then in arithmetic mod p, we can divide by any number except for 0.