More modular division Lecture 8b: 2022-03-06

MAT A02 - Winter 2022 - UTSC Prof. Yun William Yu

Modular division recap

- Definition: $\frac{x}{y} \equiv z(\bmod n)$ if z is the unique number in $\bmod n$ arithmetic such that $y \times z \equiv x(\bmod n)$.
Ex. $\frac{3}{4} \equiv 2 \quad(\bmod 5)$ became $4.2 \equiv 8 \equiv 3$
and this is only true for 2 .
Ex. $\frac{3}{4}$ (nod 6) is undefined became $4 z$ (nad 6) is always even and can never be 3 .

Ex. $\frac{2}{4}(\bmod 6)$ is undefined became

$$
\begin{array}{ll}
4 \cdot 2 \equiv 8 \equiv 2 & (\bmod 6) \\
\text { AND } \quad 4 \cdot 5 \equiv 20 \equiv 2 \quad(\operatorname{nod} 6)
\end{array}
$$

Euclidean algorithm for reciprocals

- Find the reciprocal $\frac{1}{7}(\bmod 11)$ using Euclidean alg

Neat $7 x \equiv 1(\bmod 11)$
Or $7 x=11 y+1$, where x, y integers
Or $1=7 x-11 y \leftarrow a$ combination of 7 ant II, elualtal.

$$
\begin{array}{lll}
H=7 \cdot 1+4 \\
7=4 \cdot 1+3 & \Rightarrow & 1 \\
4=3 \cdot 1+1 & & =4-3 \\
3=3 \cdot 1 & & =4-(7-4) \\
\operatorname{god}(7,11)=1 & & =(11-7) \cdot 7 \\
& & 1 \\
& & =11 \cdot 2-7 \cdot 3 \\
& & \equiv 11 \cdot 2-7 \cdot 3 \quad(\bmod 11) \\
& 1 \equiv 0 \cdot 2-7 \cdot 3 \quad(\bmod 11) \\
& & \equiv 7 \cdot(-3) \quad(\bmod 11) \\
& & \equiv 7 \cdot 8(\bmod 11) \\
& \frac{1}{7} \equiv 8(\bmod (1)
\end{array}
$$

Try it out

- Find the reciprocal $\frac{1}{9}(\bmod 13)$.

$$
\begin{aligned}
& \text { Need } 9_{x} \equiv 1 \text { (mod 13) } \\
& 9_{x}=1+1 b_{y} \\
& 1=9 x-13 y \\
& 1=9-4 \cdot 2 \\
& 13=9.1+4 \\
& 1=9-(13-9) \cdot 2 \\
& 1=9 \cdot 3-13 \cdot 2 \\
& T=4 \cdot 2+1 \\
& 4=4 \cdot 1 \\
& 1 \equiv 9.3-\underline{13} \cdot 2 \quad(\bmod 13) \\
& 1 \equiv 9.3 \text { (mod (3) } \\
& \Rightarrow \frac{1}{9} \equiv 3 \quad\left(\begin{array}{ll}
\text {. } & 13
\end{array}\right)
\end{aligned}
$$

How to do division $\frac{x}{y}(\bmod n)$

- Step 1: check if (y, n) are relatively prime. If not, then division is ill-defined.

$$
\begin{aligned}
& \text { Es. } \quad \frac{7}{9} \quad(\bmod 13) \\
& \\
& \quad \operatorname{gcd}(9,13)=1
\end{aligned}
$$

- Step 2: use Euclidean algorithm to find $\frac{1}{y}(\bmod n)$ Previous slide: $\quad \frac{1}{9} \equiv 3(\bmod 13)^{y}$
- Step 3: multiply $x \cdot \frac{1}{y}(\bmod n)$.

$$
7 \cdot \frac{1}{9} \equiv 7 \cdot 3 \equiv 21 \equiv 8(\bmod 13)
$$

Try it out

$$
\begin{aligned}
& \text { - Find } \frac{8}{9}(\bmod 23) \text {. } \\
& \text { Euclitan aly } \\
& 23=9.2+5 \\
& \frac{\text { Solue for } \frac{1}{9}}{1=5-4} \\
& 9=5 \cdot 1+4 \\
& 1=5-(9-5)=5-2-9 \\
& 5=4.1+1 \\
& 4=4.1 \\
& \sqrt{\operatorname{gad}}(9,23)=1 \\
& \text { } \equiv-9.5 \quad(\bmod 23) \\
& \Rightarrow \frac{1}{9} \equiv-5 \quad(\bmod 23) \\
& \frac{1}{9}=18 \quad(\bmod 23) \\
& 8 \cdot \frac{1}{9} \equiv 8 \cdot(-5) \quad(\bmod 23) \\
& \frac{8}{9} \equiv-40 \quad(\bmod 23) \\
& \frac{8}{9} \equiv 6 \quad(0.623)
\end{aligned}
$$

Try it out

- Find $\frac{7}{216}(\bmod 691)$.

$$
\begin{array}{rlrl}
691 & =216 \cdot 3+43 & & 1 \\
216 & =43 \cdot 216-43 \cdot 5 \\
43 & =43 \cdot 1 & & 1 \\
& & & =216-(691-216 \cdot 3) \cdot 5 \\
\operatorname{god}(216,691)=1 & & 1 & \equiv 216 \cdot 16-691 \cdot 5 \\
& & & (\bmod 691) \\
\frac{7}{216} & \equiv \frac{1}{216} \equiv 16 \quad(\bmod 691) \\
& \equiv 112 & (\bmod 691) \\
& & (\operatorname{nod} 69)
\end{array}
$$

Try it out

- Find $\frac{10}{183}(\bmod 1521) \overbrace{\text { Notice: }}^{1521}$ and $\overbrace{183}^{12}$ are both divisible by 3 .

$$
\Rightarrow \quad i l l \text {-de fred. }
$$

A: 112
B: 231
C: 450
D: 599
E: None of the above

Another shortcut

- When working with prime modulus, you can also factor out fractions.
Fax. $\frac{5}{10} \operatorname{lnod}(1)$

$$
\begin{aligned}
11=10 \cdot 1+1 & \Rightarrow 1=11-10 \\
& 1 \equiv 11-10 \cdot 1 \quad(\operatorname{aod} 11) \\
& \Rightarrow 1 \equiv 10 \cdot(-1) \quad(\bmod 11) \\
& \Rightarrow \frac{1}{10} \equiv-1(\bmod 11 \\
& \Rightarrow \frac{5}{10} \equiv 5 \cdot-1 \equiv-5 \equiv 6(\bmod 11)
\end{aligned}
$$

Ex. $\quad \frac{5}{10}(\bmod 11) \equiv \frac{1}{2} \cdot \frac{5}{5}(\bmod 11) \equiv \frac{1}{2}(\bmod 11)$

$$
\begin{aligned}
11=2.5+11 \quad 1 & =11-2.5 \\
& 1 \equiv-2.5 \quad(\bmod 11) \\
\frac{1}{2} & \equiv-5 \equiv 6 \quad(\operatorname{mot} 11 /)
\end{aligned}
$$

Try it out

- Find $\frac{7}{70}(\bmod 71)=\frac{1}{10}$

$$
\begin{aligned}
71 & =10 \cdot 7+1 \\
1 & =71-10 \cdot 7 \\
1 & =-7 \cdot 10 \\
\frac{1}{10} & \equiv-7 \equiv 64 \quad(\bmod 71)
\end{aligned}
$$

$$
\sqrt{2}^{7 \cdot 13}
$$

- Find $\frac{7}{70}(\bmod 91)$

WRONG:

$$
\begin{gathered}
\frac{7}{70} \equiv \frac{1}{10}(\operatorname{a.d} 91) \\
1=91-10.9 \\
1 \equiv-10.9 \\
\frac{1}{10} \equiv-9 \equiv 82
\end{gathered}
$$

$7 \cdot \frac{1}{30}(\bmod 71)$

$$
\begin{aligned}
& 71=70.1+1 \\
& 1=71-70 \\
& 1 \equiv-70 \\
& \frac{1}{70} \equiv-1 \\
& \frac{7}{70} \equiv-7 \equiv 64
\end{aligned}
$$

Problem ged $(70,91)=7$
so multiple, olusouns
En. $4 \cdot 70 \equiv 7 \mathrm{mod}$ al

