Modular powers \& Successive squaring Lecture 8c: 2022-03-06
 MAT A02 - Winter 2022 - UTSC
 Prof. Yun William Yu

What are exponents?

- Exponents are repeated multiplication.
- In the ordinary integers, powers get big, super fast. $1,2,4,8,16,32,64,128,256$, 512, $1024, \ldots$
$1,3,9,27,81,243,829, \ldots$
- In modular arithmetic, powers bounce around the circle.

In base 12:
$1,2,4,8,4,8,4,8,4,8, \ldots$
$1,3,9,3,9,3,9,3,9, \ldots$

How many steps to compute?

- How many times do you have to multiply to figure out 2^{16} ?

$$
\begin{aligned}
& \underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{2^{8}} \cdot \underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{2^{8}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\left(2^{2}\right)^{2}\right)^{2}\right)^{2}
\end{aligned}
$$

Method of successive squaring

- For any x^{n}, if n is a power of 2 , we can quickly compute it by repeatedly squaring.

$$
\begin{aligned}
3^{2} \rightarrow & 3^{4} \rightarrow 3^{8} \rightarrow 3^{16} \rightarrow 3^{32} \rightarrow \cdots \\
& A_{\text {site: }} \text { uses } \log _{2} n \text { multiplications }
\end{aligned}
$$

- If n is not a power of 2 , we can rewrite it as a sum of powers of 2 , and then multiply them together.

$$
3^{23}
$$

$$
\begin{aligned}
& 23=16+4+2+1 \\
& 3^{23}=3^{16} \cdot 3^{4} \cdot 3^{2} \cdot 3^{1}
\end{aligned}
$$

- To break up the exponent into a sum of powers of 2, we repeatedly subtract the largest power of 2 that's smaller than the remaining piece.

$$
23-16=7 \quad 7-4=3 \quad 3-2=1
$$

Try it out

Try it out

$$
55=32+16+4+2+1
$$

- Compute $11^{55}(\bmod 19)$

$$
\begin{aligned}
& 2^{0}=1 \\
& 2^{1}=2
\end{aligned}
$$

$$
\begin{aligned}
& 55 11^{55} \equiv 11^{32} \cdot 11^{16} \cdot 11^{4} \cdot 11^{2} \cdot 11 \\
& \frac{-32}{23} \equiv \cdot 11 \cdot 11 \cdot 7 \cdot 11 \\
& \frac{11}{23} \equiv 7^{2} \cdot 11^{3} \\
& \frac{-16}{7} 11^{2} \equiv 121 \equiv 7 \quad 11^{5} \equiv 11 \\
& \frac{-4}{3} \cdot 11^{4} \equiv\left(11^{2}\right)^{2} \equiv 7^{2} \equiv 49 \equiv 11 \\
& \frac{-2}{1} \cdot 11^{8} \equiv 11^{2} \equiv 7 \\
& 11^{16} \equiv 11 \\
& 11^{32} \equiv 7
\end{aligned}
$$

$$
2^{2}=4
$$

$$
2^{3}=8
$$

$$
2^{4}=16
$$

$$
2^{5}=32
$$

$$
\begin{gathered}
2^{6}=64
\end{gathered}
$$

$$
\begin{aligned}
& 2^{7}=128 \\
& 2^{8}=256
\end{aligned}
$$

$$
\begin{aligned}
& L^{0}=\angle 56 \\
& 2^{9}=512
\end{aligned}
$$

$$
2^{10}=1024
$$

Try it out in modular arithmetic

$$
\begin{aligned}
& \text { - Compute } 3^{1300}(\bmod 100) \\
& \begin{array}{c}
1300 \\
-1024 . \\
\hline 276
\end{array} \\
& 3^{1300} \equiv 3^{1024} \cdot 3^{256} \cdot 3^{16} \cdot 3^{4} \\
& \equiv 81 \cdot 21 \cdot 21 \cdot 81 \\
& \equiv 61 \cdot 41 \\
& \equiv 2501 \text { =1 } \\
& 2^{0}=1 \\
& 2^{1}=2 \\
& 2^{2}=4 \\
& 2^{3}=8 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{6}=64 \\
& \begin{array}{l}
2^{7}=128 \\
2^{8}=256
\end{array} \\
& \begin{array}{l}
2^{8}=256 \\
2^{9}=512
\end{array} \\
& 2^{10}=1024 \\
& 3^{8} \equiv 6561 \equiv 61 \\
& 3^{16} \equiv 3721 \equiv 21 \\
& 3^{32} \equiv 441 \equiv 41 \\
& 3^{64} \equiv 1681 \equiv 81 \\
& 3^{128} \equiv 61 \\
& 3^{256} \equiv 21 \\
& 3^{5 / 2} \equiv 41 \\
& 3^{1024} \equiv 81
\end{aligned}
$$

