Modular powers & Successive squaring Lecture 8c: 2022-03-06

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

What are exponents?

- Exponents are repeated multiplication.
- In the ordinary integers, powers get big, super fast.
 1, 2, 4, 8, 16, 32, 64, 128, 256, \$12, 1024,...
 1, 3, 9, 27, 81, 243, 821,...
- In modular arithmetic, powers bounce around the circle.
 In base (2:

1, 2, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, ---

1, 3, 9, 3, 9, 3, 9, 9, 9, ...

How many steps to compute?

 How many times do you have to multiply to figure out 2¹⁶?

Method of successive squaring

• For any x^n , if n is a power of 2, we can quickly compute it by repeatedly squaring.

- If *n* is not a power of 2, we can rewrite it as a sum of powers of 2, and then multiply them together. $3^{23} = 2^{3} = 2^{16} + 4 + 2^{16} + 4 + 2^{16} + 3^{1$
- To break up the exponent into a sum of powers of 2, we repeatedly subtract the largest power of 2 that's smaller than the remaining piece.

23-16=7 7-4=3 3-2=1

Try it out

• Compute $7^{42} \pmod{11}$

• Compute
$$7^{42} \pmod{11}$$

 $42 \qquad 7^{41} \equiv 7^{31} \cdot 7^{5} \cdot 7^{1}$
 $-32 \quad \equiv 5 \cdot 9 \cdot 5$
 $= 25 \cdot 9 \equiv 3 \cdot 9$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$
 $41 \qquad 7^{2} \equiv 49 \equiv 5$
 $-\frac{16}{10} \qquad 7^{11} \equiv 81 \equiv 4$
 $7^{31} \equiv 5$
 $-\frac{8}{2} \cdot \frac{8}{2} \cdot \frac{11}{2} = 5$

Try it out 55 = 32 + 164 4 + 2 + 1

• Compute 11⁵⁵ (mod 19)

$$55 \qquad ||^{55} \equiv ||^{32} \cdot ||^{1/2} \cdot ||^{1/2} \cdot ||^{2} \cdot ||^{2} \\ = 7 \cdot || \cdot || \cdot 7 \cdot ||^{2} \\ \equiv 7 \cdot || \cdot || \cdot 7 \cdot ||^{3} \\ = 7 \cdot ||^{3} \\ || \equiv ||^{2} \equiv 7 \\ = 7^{2} \cdot ||^{3} \\ ||^{2} \equiv |2| \equiv 7 \\ = 1|^{4} \\ ||^{4} \equiv (||^{2})^{2} \equiv 7^{2} \equiv 49 \\ = 16 \\ 2^{5} = 32 \\ 2^{6} = 64 \\ 2^{7} = 128 \\ 2^{8} = 256 \\ 2^{9} = 512 \\ 2^{10} = 1024 \\ ||^{8} \equiv 1|^{2} \\ = 7 \\ . \\ ||^{1/6} \equiv ||^{2} \\ ||^{32} \equiv 7 \\ . \\ ||^{1/6} \equiv 1| \\ ||^{32} \equiv 7 \\ . \\ ||^{32} =$$

 $2^0 = 1$ $2^1 = 2$

n2

Try it out in modular arithmetic

 $2^0 = 1$

• Compute $3^{1300} \pmod{100}$ $3^{1300} \equiv 3^{1024}$. $3^{256} \cdot 3^{16} \cdot 3^{4}$ $2^{1} = 2$ $2^{2} = 4$ $2^{3} = 8$

300	3 = 3 - 3 - 3 - 3	$2^3 = 8$
-1024 .	= 81.21.21.81	$2^4 = 16$
276	_	$2^5 = 32$
- 256 •	$= 61 \cdot 41$	$2^6 = 64$
	3'=3 = 2501=1	$2^7 = 128$
20	$3^2 \equiv 9$ $\equiv 2507 \approx 7$	$2^8 = 256$
- 16 ·		$2^9 = 512$
4 •	3 = 81	$2^{10} = 1024$
·	38 = 6561 = 61	
	316 = 372/=21	
	332 = 441 = 41	
	364 = 1681 = 81	
	2128 = 61	
	256 - 21	
	3512 Ξ 41 B: 50	
	a 1024 = 81 C:83	
	D: 8	9
	E: N	one of the above