Modular power patterns \&

Fermat's little theorem Lecture 8d: 2022-03-06

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Think like a mathematician

- What are some questions you as a mathematician might be asking now about powers in modular arithmetic?

Answers in chat

- Remember when we were learning about prime numbers, a big question was prime patterns.
- We can ask similar questions here: what patterns are there in powers in modular arithmetic?
- Can 0 be a power of a non-zero number?
- Is it always?
- Do the powers repeat?
- If so, how long before they repeat?
- Can 1 be a non-zero power of a non-zero number?
- Is it always?

Let's experiment

- Consider arithmetic mod 7 and arithmetic mod 12.
- Write out all the powers of $1,2,3,4,5,6$ in tables.

	x^{0}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}	x^{9}	x^{10}	x^{11}	x^{12}
$\mathbf{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	1	2	4	1	2	4	1	2	4	1
3	1	3	2	6	4	5	1	3	2	6	4	5	1
4	1	4	2	1	4	2	1	4	2	1	4	2	1
5	1	5	4	6	2	3	1	5	4	6	2	3	1
6	1	6	1	6	1	6	1	6	1	6	1	6	1

	x^{0}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}	x^{9}	x^{10}	x^{11}	x^{12}
1	1	1	1	1	1	1	1	1	1	$/$	1	1	1
2	1	2	4	8	4	8	4	8	4	8	4	8	4
3	1	1	9	3	9	3	9	3	9	3	9	3	9
4	1	4	4	4	4	4	4	4	4	4	4	4	4
5	1	5	1	5	1	5	1	5	1	5	1	5	1
6	1	6	0	0	0	0	0	0	0	0	0	0	0

Let's experiment

- Consider arithmetic $\bmod 7$ and arithmetic $\bmod 12$.
- Write out all the powers of $1,2,3,4,5,6$ in tables.

$\bmod 7$| | $\boldsymbol{x}^{\mathbf{0}}$ | $\boldsymbol{x}^{\mathbf{1}}$ | $\boldsymbol{x}^{\mathbf{2}}$ | $\boldsymbol{x}^{\mathbf{3}}$ | $\boldsymbol{x}^{\mathbf{4}}$ | $\boldsymbol{x}^{\mathbf{5}}$ | $\boldsymbol{x}^{\mathbf{6}}$ | $\boldsymbol{x}^{\mathbf{7}}$ | $\boldsymbol{x}^{\mathbf{8}}$ | $\boldsymbol{x}^{\mathbf{9}}$ | $\boldsymbol{x}^{\mathbf{1 0}}$ | $\boldsymbol{x}^{\mathbf{1 1}}$ | $\boldsymbol{x}^{\mathbf{1 2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{2}$ | 1 | 2 | 4 | 1 | 2 | 4 | 1 | 2 | 4 | 1 | 2 | 4 | 1 |
| $\mathbf{3}$ | 1 | 3 | 2 | 6 | 4 | 5 | 1 | 3 | 2 | 6 | 4 | 5 | 1 |
| $\mathbf{4}$ | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 |
| $\mathbf{5}$ | 1 | 5 | 4 | 6 | 2 | 3 | 1 | 5 | 4 | 6 | 2 | 3 | 1 |
| $\mathbf{6}$ | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 |

	$x^{\mathbf{0}}$	$\boldsymbol{x}^{\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{3}}$	$\boldsymbol{x}^{\mathbf{4}}$	$\boldsymbol{x}^{\mathbf{5}}$	$\boldsymbol{x}^{\mathbf{6}}$	$\boldsymbol{x}^{\mathbf{7}}$	$\boldsymbol{x}^{\mathbf{8}}$	$\boldsymbol{x}^{\mathbf{9}}$	$\boldsymbol{x}^{\mathbf{1 0}}$	$x^{\mathbf{1 1}}$	$\boldsymbol{x}^{\mathbf{1 2}}$
$\mathbf{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{2}$	1	2	4	8	4	8	4	8	4	8	4	8	4
$\mathbf{3}$	1	3	9	3	9	3	9	3	9	3	9	3	9
$\mathbf{4}$	1	4	4	4	4	4	4	4	4	4	4	4	4
$\mathbf{5}$	1	5	1	5	1	5	1	5	1	5	1	5	1

Conjectured patterns

- Can 0 be a power of a non-zero number? Ye,
- Is it always? N,
- Do the powers repeat? Ye,
- If so, how long before they repeat?

$$
\begin{aligned}
& \text { Cycle length } \leq \text { modulus } n \\
& \text { became only } n \text { possible state }
\end{aligned}
$$

- Can 1 be a non-zero power of a non-zero number? Yes
- Is it always? Yes for prime

$$
N_{0} \text { for non prime }
$$

- What's the difference in behavior between mod 7 and mod 12 ?
- Why is the behavior different?

$$
\begin{array}{cc}
\text { Prone } & 7 \\
\text { Nonprine } & 12
\end{array}
$$

Modular powers always repeat prose- Consider mod n arithmetic.
There are n distinct numbers $\{0,1,2, \ldots, n-1\}$ $x^{n+1} \equiv x \cdot x^{n}$
' \downarrow departs only on pressings power
This, if $x^{i} \equiv x^{j}$ for $i \neq j$
then

$$
\begin{aligned}
& x^{i+1} \equiv x^{j+1} \\
& x^{i+2} \equiv x^{j+2} \\
& \vdots \\
& \text { and so on, repetitioly. }
\end{aligned}
$$

Pigeonhole principles:

 Thus, for some $i \neq j, x^{i}=x^{j}$, so modular powers repeat.

