Modular power patterns \&

Fermat's little theorem Lecture 8d: 2022-03-06

MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Think like a mathematician

- What are some questions you as a mathematician might be asking now about powers in modular arithmetic?

Answers in chat

- Remember when we were learning about prime numbers, a big question was prime patterns.
- We can ask similar questions here: what patterns are there in powers in modular arithmetic?
- Can 0 be a power of a non-zero number?
- Is it always?
- Do the powers repeat?
- If so, how long before they repeat?
- Can 1 be a non-zero power of a non-zero number?
- Is it always?

Let's experiment

- Consider arithmetic mod 7 and arithmetic mod 12.
- Write out all the powers of $1,2,3,4,5,6$ in tables.

$\bmod 7<$| | x^{0} | x^{1} | x^{2} | x^{3} | x^{4} | x^{5} | x^{6} | x^{7} | x^{8} | x^{9} | x^{10} | x^{11} | x^{12} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | |
| 3 | | | | | | | | | | | | | |
| 4 | | | | | | | | | | | | | |
| 5 | | | | | | | | | | | | | |
| 6 | | | | | | | | | | | | | |

$\bmod 12 \quad$| | x^{0} | x^{1} | x^{2} | x^{3} | x^{4} | x^{5} | x^{6} | x^{7} | x^{8} | x^{9} | x^{10} | x^{11} | x^{12} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | | | | | | | | |
| 2 | | | | | | | | | | | | | |
| 3 | | | | | | | | | | | | | |
| 4 | | | | | | | | | | | | | |
| 5 | | | | | | | | | | | | | |
| 6 | | | | | | | | | | | | | |

Conjectured patterns

- Can 0 be a power of a non-zero number?
- Is it always?
- Do the powers repeat?
- If so, how long before they repeat?
- Can 1 be a non-zero power of a non-zero number?
- Is it always?
- What's the difference in behavior between $\bmod 7$ and mod 12 ?
- Why is the behavior different?

Modular powers always repeat

Always getting 1 as a non-zero power

- Claim: Let $x \neq 0$. Then $x^{k} \equiv 1(\bmod n)$ for some $k \neq 0$.

Powers in prime moduli $\neq 0$

- Claim: Let $x \neq 0$ and p a prime. Then $x^{m} \not \equiv$ $0(\bmod p)$ for any $m>0$.

Fermat's little theorem

- Let p be prime.
- If $x \not \equiv 0(\bmod p)$, then $x^{p-1} \equiv 1(\bmod p)$.
- For any x (including 0$)$, can say $x^{p} \equiv x(\bmod p)$.
$\bmod 7$

	$\boldsymbol{x}^{\mathbf{0}}$	$\boldsymbol{x}^{\mathbf{1}}$	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x}^{\mathbf{3}}$	$\boldsymbol{x}^{\mathbf{4}}$	$\boldsymbol{x}^{\mathbf{5}}$	$\boldsymbol{x}^{\mathbf{6}}$	$\boldsymbol{x}^{\mathbf{7}}$	$\boldsymbol{x}^{\mathbf{8}}$	$\boldsymbol{x}^{\mathbf{9}}$	$\boldsymbol{x}^{\mathbf{1 0}}$	$\boldsymbol{x}^{\mathbf{1 1}}$	$\boldsymbol{x}^{\mathbf{1 2}}$
$\mathbf{1}$	1	1	1	1	1	1	1	1	1	1	1	1	1
$\mathbf{2}$	1	2	4	1	2	4	1	2	4	1	2	4	1
$\mathbf{3}$	1	3	2	6	4	5	1	3	2	6	4	5	1
$\mathbf{4}$	1	4	2	1	4	2	1	4	2	1	4	2	1
$\mathbf{5}$	1	5	4	6	2	3	1	5	4	6	2	3	1
$\mathbf{6}$	1	6	1	6	1	6	1	6	1	6	1	6	1

Proof idea

- Remember from the bean-bag tossing experiment that for prime modulus p, the multiples of any nonzero number x are all the numbers.
- Now we write x in $p-1$ different ways:
$x \equiv \frac{x}{1} \equiv \frac{2 x}{2} \equiv \frac{3 x}{3} \equiv \cdots \equiv \frac{(p-1) x}{p-1}$.
- Multiplying them all together gives the proof.
$x^{p-1} \equiv \frac{x}{1} \frac{2 x}{2} \frac{3 x}{3} \cdots \frac{(p-1) x}{p-1} \equiv 1$

Math history

- Reminder: modular arithmetic was invented in 1801 by Carl Friedrich Gauss.
- When was Fermat's Little Theorem developed?

$$
\begin{aligned}
& \text { A: Before } 1800 \text { CE } \\
& \text { B: } 1800 \text { CE to } 1900 \text { CE } \\
& \text { C: } 1900 \text { CE to } 1950 \text { CE } \\
& \text { D: } 1950 \text { CE to } 2000 \text { CE } \\
& \text { E: After } 2000 \text { CE }
\end{aligned}
$$

Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801

Pierre de Fermat

Computing powers faster

- We can use Fermat's Little Theorem to quickly reduce large powers by division with remainder.
- Let $n=m(p-1)+r$. Then $x^{n} \equiv x^{r}(\bmod p)$.

Try it out

- $6^{363}(\bmod 11)$
- $7^{286}(\bmod 13)$

> A: 4
> B: 5
> C: 6
> D: 7
> E: None of the above

Alternative for finding reciprocals

- Notice that $x^{p-1} \equiv 1(\bmod p)$.
- Therefore, $x^{p-2} \equiv \frac{1}{x}(\bmod p)$.

Try it out

- Find $\frac{1}{12}(\bmod 67)$.

A: 20
B: 24
C: 28
D: 32
E: None of the above

