Fermat's Little Theorem Lecture 9a: 2022-03-14

MAT A02 – Winter 2022 – UTSC Prof. Yun William Yu

Experimental results

- Consider arithmetic mod 7 and arithmetic mod 12.
- Powers of 1, 2, 3, 4, 5, 6 in tables.

		<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	<i>x</i> ¹⁰	<i>x</i> ¹¹	<i>x</i> ¹²
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	1	2	4	1	2	4	1	2	4	1	2	4	1
mod 7	3	1	3	2	6	4	5	1	3	2	6	4	5	1
	4	1	4	2	1	4	2	1	4	2	1	4	2	1
	5	1	5	4	6	2	3	1	5	4	6	2	3	1
	6	1	6	1	6	1	6	1	6	1	6	1	6	1
		<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	x ¹⁰	<i>x</i> ¹¹	x ¹²
	1	1	1	1	1	1	1	1	1	1	1	1	1	1
							-	T	-	-	-	-		1 1
	2	1	2	4	8	4	8	4	8	4	8	4	8	4
mod 12	2 3	1	2 3	4 9	8 3	4 9							8 3	4
mod 12							8	4	8	4	8	4	_	
mod 12	3	1	3	9	3	9	8	4 9	8	4 9	8	4	3	9

Patterns to prove

- Last time we proved powers always repeat using the pigeonhole principle, and the fact that there are only a n numbers in mod n arithmetic, but an infinite number of powers.
- Patterns for today
- Do you always get 1 as a power of a non-zero number?
 - If not, when do and don't you?
- When can you not get 0 as a power of a non-zero number?

Always getting 1 as a non-zero power

• Claim: Let $x \neq 0$. Then $x^k \equiv 1 \pmod{n}$ for some $k \neq 0$.

Which step is wrong?

Powers in prime moduli $\neq 0$

• Claim: Let $x \neq 0$ and p a prime. Then $x^m \not\equiv 0 \pmod{p}$ for any m > 0.

Which step is wrong?

Fermat's little theorem

- Let p be prime.
- If $x \not\equiv 0 \pmod{p}$, then $x^{p-1} \equiv 1 \pmod{p}$.
- For any x (including 0), can say $x^p \equiv x \pmod{p}$.

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹	<i>x</i> ¹⁰	<i>x</i> ¹¹	<i>x</i> ¹²
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	1	2	4	1	2	4	1	2	4	1
3	1	3	2	6	4	5	1	3	2	6	4	5	1
4	1	4	2	1	4	2	1	4	2	1	4	2	1
5	1	5	4	6	2	3	1	5	4	6	2	3	1
6	1	6	1	6	1	6	1	6	1	6	1	6	1

Proof idea

 Remember from the bean-bag tossing experiment that for prime modulus p, the multiples of any nonzero number x are all the numbers.

- Now we write x in p-1 different ways: $x \equiv \frac{x}{1} \equiv \frac{2x}{2} \equiv \frac{3x}{3} \equiv \cdots \equiv \frac{(p-1)x}{p-1}.$
- Multiplying them all together gives the proof. $x^{p-1} \equiv \frac{x}{1} \frac{2x}{2} \frac{3x}{3} \cdots \frac{(p-1)x}{p-1} \equiv 1$

Math history

 Reminder: modular arithmetic was invented in 1801 by Carl Friedrich Gauss.

• When was Fermat's Little Theorem developed?

> A: Before 1800 CE B: 1800 CE to 1900 CE C: 1900 CE to 1950 CE D: 1950 CE to 2000 CE E: After 2000 CE

Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801

Pierre de Fermat

Computing powers faster

- We can use Fermat's Little Theorem to quickly reduce large powers by division with remainder.
- Let n = m(p-1) + r. Then $x^n \equiv x^r \pmod{p}$.

Try it out

• $6^{363} \pmod{11}$

• $7^{286} \pmod{13}$

A: 4 B: 5 C: 6 D: 7 E: None of the above

Alternative for finding reciprocals

- Notice that $x^{p-1} \equiv 1 \pmod{p}$.
- Therefore, $x^{p-2} \equiv \frac{1}{x} \pmod{p}$.

Try it out

• Find $\frac{1}{12}$ (mod 67).

A: 20 B: 24 C: 28 D: 32 E: None of the above