Reciprocals via

Fermat's Little Theorem

 Lecture 9c: 2022-03-16MAT A02 - Winter 2022 - UTSC
Prof. Yun William Yu

Fermat's little theorem

- Let p be prime.
- If $x \not \equiv 0(\bmod p)$, then $x^{p-1} \equiv 1(\bmod p)$.
- For any x (including 0), can say $x^{p} \equiv x(\bmod p)$.
- We can use Fermat's Little Theorem to quickly reduce large powers by division with remainder.
- Let $n=m(p-1)+r$. Then $x^{n} \equiv x^{r}(\bmod p)$.

Try it out

- $4^{244}(\bmod 7)$
- $7^{286}(\bmod 13)$

> A: 4
> B: 5
> C: 6
> D: 7
> E: None of the above

Another example

$\cdot 3^{401}(\bmod 81)$

A: 0
B: 1
C: 2
D: 3
E: None of the above

Alternative for finding reciprocals

- Recall, can use Euclidean algorithm to find reciprocals
- Notice that $x^{p-1} \equiv 1(\bmod p)$.
- Therefore, $x^{p-2} \equiv \frac{1}{x}(\bmod p)$.

Try it out

- Find $\frac{1}{12}(\bmod 67)$.

A: 20
B: 24
C: 28
D: 32
E: None of the above

Try it out

- Find $\frac{1}{2}(\bmod 131)$.

A: 25
B: 33
C: 66
D: 91
E: None of the above

